

## Topology change and non-geometry at infinite distance

[Saskia Demulder, Dieter Lüst, TR; 2312.07674]

String Phenomenology 24 Padova, 27.06.2024

**Thomas Raml** 







- Non-trivial fibrations / Curved manifolds
- > Fluxes







- Non-trivial fibrations / Curved manifolds
- > Fluxes









- Non-trivial fibrations / Curved manifolds
- > Fluxes

External space







internal space



- Non-trivial momentum-winding exchange
- > Scalar potential on moduli space

internal space

In any consistent theory of quantum gravity: [Ooguri, Vafa '06]

When going to large distances in its moduli space, encounter an infinite tower of states which become light exponentially

$$M(Q) \sim M(P)e^{-\lambda \Delta \phi}$$
 when  $\Delta \phi \to \infty$ ,  $\Delta \phi \equiv d(P,Q)$ 



describes the parameters of the internal space

In any consistent theory of quantum gravity: [Ooguri, Vafa '06]

> When going to large distances in its moduli space, encounter an infinite tower of states which become light exponentially

$$M(Q) \sim M(P)e^{-\lambda \Delta \phi}$$
 when  $\Delta \phi \to \infty$ ,  $\Delta \phi \equiv d(P,Q)$ 

**Example:** Circle compactification

$$S_{\text{EH}} \sim \int d^{D-1}x \sqrt{-g} \left( \mathcal{R}(g) - \frac{c}{R^2} (\partial R)^2 \right)$$





Moduli space:

$$R = 0$$

infinite distance point

infinite distance point

 $R \to \infty$ 



describes the parameters of the internal space

In any consistent theory of quantum gravity: [Ooguri, Vafa '06]

> When going to large distances in its moduli space, encounter an infinite tower of states which become light exponentially

$$M(Q) \sim M(P)e^{-\lambda \Delta \phi}$$
 when  $\Delta \phi \to \infty$ ,  $\Delta \phi \equiv d(P,Q)$ 



describes the parameters of the internal space

**Example:** Circle compactification

$$S_{\text{EH}} \sim \int d^{D-1}x \sqrt{-g} \left( \mathcal{R}(g) - \frac{c}{R^2} (\partial R)^2 \right)$$







infinite distance point

 $R \to \infty$ 

For  $R \rightarrow 0$ **Infinite tower** of massless KK-modes

$$m_{KK}^2 \sim \frac{1}{R^2}$$

&

For 
$$R \to \infty$$

**Infinite tower of** massless winding-modes  $m_w^2 \sim R^2$ 

In any consistent theory of quantum gravity: [Ooguri, Vafa '06]

When going to large distances in its moduli space, encounter an infinite tower of states which become light exponentially

$$M(Q) \sim M(P)e^{-\lambda \Delta \phi}$$
 when  $\Delta \phi \to \infty$ ,  $\Delta \phi \equiv d(P,Q)$ 



describes the parameters of the internal space

**Example:** Circle compactification

$$S_{\text{EH}} \sim \int d^{D-1}x \sqrt{-g} \left( \mathcal{R}(g) - \frac{c}{R^2} (\partial R)^2 \right)$$









$$S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \left( \mathcal{R}(G) - \frac{1}{12} H_{IJK} H^{IJK} + 4\partial_I \Phi \partial^I \Phi \right)$$

$$G(x, y) = g(x) \oplus h(y, \varphi^{a}(x))$$

$$S \sim \int \mathrm{d}^{D-n} x \sqrt{-g} \left( \mathcal{R}(g) - \gamma_{ab} \partial_{\mu} \varphi^a \partial^{\mu} \varphi^b - V(\varphi^a) \right)$$

$$\mathsf{metric}$$

$$\rho$$

$$\mathsf{potential}$$

$$\gamma_{ab} \sim \left[ \mathrm{d}^n y \sqrt{h} \left( \mathrm{tr} (h^{-1} \partial_{\varphi_a} h \ h^{-1} \partial_{\varphi_b} h) - \mathrm{tr} (h^{-1} \partial_{\varphi_a} B \ h^{-1} \partial_{\varphi_b} B) \right) \right]$$

$$V(\varphi^i) \sim \int \mathrm{d}^n y \sqrt{h} \left( \mathcal{R}(h) - \frac{1}{12} H_{ijk} H^{ijk} + 4 \partial_i \Phi \partial^i \Phi \right)$$

A much more challenging question...



$$S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \left( \mathcal{R}(G) - \frac{1}{12} H_{IJK} H^{IJK} + 4\partial_I \Phi \partial^I \Phi \right)$$

$$G(x, y) = g(x) \oplus h(y, \varphi^{a}(x))$$

$$S \sim \int \! \mathrm{d}^{D-n} x \, \sqrt{-g} \left( \mathcal{R}(g) - \gamma_{ab} \partial_{\mu} \varphi^a \partial^{\mu} \varphi^b - V(\varphi^a) \right)$$
 metric 
$$\rho$$
 potential 
$$\gamma_{ab} \sim \left[ \mathrm{d}^n y \sqrt{h} \left( \mathrm{tr}(h^{-1} \partial_{\varphi_a} h \ h^{-1} \partial_{\varphi_b} h) - \mathrm{tr}(h^{-1} \partial_{\varphi_a} B \ h^{-1} \partial_{\varphi_b} B) \right) \right]$$

$$V(\varphi^i) \sim \int \mathrm{d}^n y \sqrt{h} \left( \mathcal{R}(h) - \frac{1}{12} H_{ijk} H^{ijk} + 4 \partial_i \Phi \partial^i \Phi \right)$$

A much more challenging question...

▶ Backgrounds display curvature and/or fluxes: sources a scalar potential



$$S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \left( \mathcal{R}(G) - \frac{1}{12} H_{IJK} H^{IJK} + 4\partial_I \Phi \partial^I \Phi \right)$$

$$G(x,y) = g(x) \oplus h(y,\varphi^{a}(x))$$

$$S \sim \int \mathrm{d}^{D-n}x \, \sqrt{-g} \left( \mathscr{R}(g) - \gamma_{ab} \partial_{\mu} \varphi^a \partial^{\mu} \varphi^b - V(\varphi^a) \right)$$

$$\mathsf{metric}$$

$$\mathsf{potential}$$

$$\gamma_{ab} \sim \left[ \mathrm{d}^n y \sqrt{h} \left( \mathrm{tr}(h^{-1} \partial_{\varphi_a} h \ h^{-1} \partial_{\varphi_b} h) - \mathrm{tr}(h^{-1} \partial_{\varphi_a} B \ h^{-1} \partial_{\varphi_b} B) \right) \right]$$

$$V(\varphi^i) \sim \left[ d^n y \sqrt{h} \left( \mathcal{R}(h) - \frac{1}{12} H_{ijk} H^{ijk} + 4 \partial_i \Phi \partial^i \Phi \right) \right]$$



A much more challenging question...

- ▶ Backgrounds display curvature and/or fluxes: sources a scalar potential
- □ Under T-duality may display changes in topology





$$S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \left( \mathcal{R}(G) - \frac{1}{12} H_{IJK} H^{IJK} + 4\partial_I \Phi \partial^I \Phi \right)$$

$$G(x,y) = g(x) \oplus h(y,\varphi^{a}(x))$$

$$S \sim \int \mathrm{d}^{D-n}x \sqrt{-g} \left( \mathcal{R}(g) - \gamma_{ab}\partial_{\mu}\varphi^{a}\partial^{\mu}\varphi^{b} - V(\varphi^{a}) \right)$$

$$\mathbf{metric}$$

$$potential$$

$$\gamma_{ab} \sim \left[ \mathrm{d}^{n}y \sqrt{h} \left( \mathrm{tr}(h^{-1}\partial_{\varphi_{a}}h \ h^{-1}\partial_{\varphi_{b}}h) - \mathrm{tr}(h^{-1}\partial_{\varphi_{a}}B \ h^{-1}\partial_{\varphi_{b}}B) \right) \right]$$

$$V(\varphi^i) \sim \int \mathrm{d}^n y \sqrt{h} \left( \mathcal{R}(h) - \frac{1}{12} H_{ijk} H^{ijk} + 4 \partial_i \Phi \partial^i \Phi \right)$$

A much more challenging question...

- ▶ Backgrounds display curvature and/or fluxes: sources a scalar potential
- □ Under T-duality may display changes in topology



> Non-geometric backgrounds





$$S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \left( \mathcal{R}(G) - \frac{1}{12} H_{IJK} H^{IJK} + 4\partial_I \Phi \partial^I \Phi \right)$$

$$G(x,y) = g(x) \oplus h(y,\varphi^{a}(x))$$

$$S \sim \int \mathrm{d}^{D-n}x \sqrt{-g} \left( \mathcal{R}(g) - \gamma_{ab} \partial_{\mu} \varphi^{a} \partial^{\mu} \varphi^{b} - V(\varphi^{a}) \right)$$

$$\mathbf{metric}$$

$$potential$$

$$\gamma_{ab} \sim \left[ \mathrm{d}^{n}y \sqrt{h} \left( \operatorname{tr}(h^{-1} \partial_{\varphi_{a}} h \ h^{-1} \partial_{\varphi_{b}} h) - \operatorname{tr}(h^{-1} \partial_{\varphi_{a}} B \ h^{-1} \partial_{\varphi_{b}} B) \right) \right]$$

$$V(\varphi^i) \sim \left[ \mathrm{d}^n y \sqrt{h} \left( \mathcal{R}(h) - \frac{1}{12} H_{ijk} H^{ijk} + 4 \partial_i \Phi \partial^i \Phi \right) \right]$$

A much more challenging question...

- ▶ Backgrounds display curvature and/or fluxes: sources a scalar potential
- □ Under T-duality may display changes in topology



> Non-geometric backgrounds





$$S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \left( \mathcal{R}(G) - \frac{1}{12} H_{IJK} H^{IJK} + 4\partial_I \Phi \partial^I \Phi \right)$$

$$G(x, y) = g(x) \oplus h(y, \varphi^{a}(x))$$



Moduli space

Do these properties modify the Swampland Distance Conjecture?

## Example: $S^3$ with H-flux

$$\begin{split} S_{\mathrm{EH}} \sim \int \mathrm{d}^d x \, \sqrt{-g} \Big( \mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - V(\varphi^a) \Big) & \longrightarrow \\ ds^2 = R^2 (\mathrm{d}\eta^2 + \mathrm{d}\xi_1^2 + \mathrm{d}\xi_2^2 + 2\cos(\eta) \mathrm{d}\xi_1^2 \mathrm{d}\xi_2^2) \\ H = k \sin(\eta) \mathrm{d}\eta \wedge \mathrm{d}\xi_1 \wedge \mathrm{d}\xi_2 \end{split}$$

$$\gamma_{RR} = \frac{3}{R^2}$$

$$V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}$$

## Example: $S^3$ with H-flux

$$S_{\rm EH} \sim \int \mathrm{d}^d x \sqrt{-g} \left( \mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - V(\varphi^a) \right)$$

$$ds^{2} = R^{2}(d\eta^{2} + d\xi_{1}^{2} + d\xi_{2}^{2} + 2\cos(\eta)d\xi_{1}^{2}d\xi_{2}^{2})$$

$$H = k\sin(\eta)d\eta \wedge d\xi_{1} \wedge d\xi_{2}$$

$$\gamma_{RR} = \frac{3}{R^2}$$

$$V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}$$



## Example: $S^3$ with H-flux

$$S_{\mathrm{EH}} \sim \int \mathrm{d}^d x \sqrt{-g} \left( \mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - V(\varphi^a) \right)$$

winding

 $\pi_1(S^3) = 0$ 

$$\gamma_{RR} = \frac{3}{R^2}$$

$$V(R; k) = -\frac{3}{2R^2} + \frac{3}{R^2}$$

$$ds^{2} = R^{2}(d\eta^{2} + d\xi_{1}^{2} + d\xi_{2}^{2} + 2\cos(\eta)d\xi_{1}^{2}d\xi_{2}^{2})$$
  

$$H = k\sin(\eta)d\eta \wedge d\xi_{1} \wedge d\xi_{2}$$



How is absence of winding modes compatible with T-duality?

What does this mean for the **Swampland Distance Conjecture**?

#### ► T-duality:

$$S_R^3$$
 with  $[H] = k$ 



$$\gamma_{RR} = \frac{3}{R^2}$$

$$V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}$$



#### ► T-duality:

$$S_R^3$$
 with  $[H] = k$ 



 $c_1(S^3) = 1$ 

$$\gamma_{RR} = \frac{3}{R^2}$$

$$V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}$$





|                                                                       | R = 0                                       | $R \to \infty$               |
|-----------------------------------------------------------------------|---------------------------------------------|------------------------------|
| $S^3$ { winding momentum                                              | Ø<br>heavy                                  | Ø<br>light                   |
| $	ilde{E} egin{array}{c} 	ext{winding} \\ 	ext{momentum} \end{array}$ | $\mathbb{Z}_k$ (heavy) heavy/ non-conserved | $\mathbb{Z}_k$ (light) light |
|                                                                       | no modes becoming light                     | tower of light states        |

#### ► T-duality:

$$S_R^3$$
 with  $[H]=k$ 



 $c_1(S^3) = 1$ 

$$\gamma_{RR} = \frac{3}{R^2}$$

$$V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}$$





|                                                                            | R = 0                                      | $R \to \infty$         |
|----------------------------------------------------------------------------|--------------------------------------------|------------------------|
| $S^3$ { winding momentum                                                   | Ø<br>heavy                                 | Ø<br>light             |
| $\tilde{E}$ $\left\{ egin{array}{ll} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\mathbb{Z}_k$ (heavy) heavy/non-conserved | $\mathbb{Z}_k$ (light) |
|                                                                            | no modes becoming light                    | tower of light states  |

#### **▶** Distance Conjecture:

$$\gamma_{RR} = \frac{3}{R^2}$$

$$V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}$$

$$S_R^3$$
 with  $[H] = k$ 



Apparent inconsistency:  $S^3$  with appropriately tuned H-flux is valid string background and therefore should be in the Landscape

However there is no tower of light states for  $R \rightarrow 0$  which is an infinite distance limit

#### **▶** Distance Conjecture:

$$\gamma_{RR} = \frac{3}{R^2}$$

$$V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}$$

$$S_R^3$$
 with  $[H] = k$ 



Apparent inconsistency:  $S^3$  with appropriately tuned H-flux is valid string background and therefore should be in the Landscape

However there is no tower of light states for  $R \rightarrow 0$  which is an infinite distance limit

...need to take into account scalar potential

#### **▶** Distance Conjecture:



$$S_R^3$$
 with  $[H] = k$ 



Apparent inconsistency:  $S^3$  with appropriately tuned H-flux is valid string background and therefore should be in the Landscape

However there is no tower of light states for  $R \rightarrow 0$  which is an infinite distance limit

...need to take into account scalar potential



[SD, Lüst, TR '23]

In effective field theories that can be lifted to a theory of quantum gravity in the UV, a divergence in the scalar potential emerges when approaching an infinite locus point for which the target space geometry cannot give rise to a light tower of states.

That is, the potential signals pathological infinite distance loci in the scalar field space.

Metric on moduli space given by

$$\gamma_{ab} \sim \int d^{n}y \sqrt{h} \left( \operatorname{tr} \left( h^{-1} \partial_{\varphi_{a}} h \ h^{-1} \partial_{\varphi_{b}} h \right) - \operatorname{tr} \left( h^{-1} \partial_{\varphi_{a}} B \ h^{-1} \partial_{\varphi_{b}} B \right) \right)$$

$$= \frac{1}{2} \operatorname{tr} \left[ (\mathcal{H}^{-1} \partial_{\varphi_{a}} \mathcal{H})^{2} \right] \qquad O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - Bh^{-1}B & Bh^{-1} \\ -h^{-1}B & h^{-1} \end{pmatrix}$$

So by O(d,d) invariance  $\gamma_{ab}$  is invariant under (abelian) T-duality.

[SD, Lüst, TR '23]

Metric on moduli space given by

$$\gamma_{ab} \sim \int d^{n}y \sqrt{h} \left( \operatorname{tr} \left( h^{-1} \partial_{\varphi_{a}} h \ h^{-1} \partial_{\varphi_{b}} h \right) - \operatorname{tr} \left( h^{-1} \partial_{\varphi_{a}} B \ h^{-1} \partial_{\varphi_{b}} B \right) \right)$$

$$= \frac{1}{2} \operatorname{tr} \left[ (\mathcal{H}^{-1} \partial_{\varphi_{a}} \mathcal{H})^{2} \right] \qquad O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - Bh^{-1}B & Bh^{-1} \\ -h^{-1}B & h^{-1} \end{pmatrix}$$

So by O(d,d) invariance  $\gamma_{ab}$  is invariant under (abelian) T-duality.

[SD, Lüst, TR '23]

Example: 
$$S^3$$
 with  $k(x)=R^2(x)$  T-duality  $\tilde{E}$ 

 $ilde{\mathbf{E}}$  ...modulus only in spacetime metric h  $\gamma_{RR}$  obtained in standard way from "deWitt" metric

Metric on moduli space given by

$$\gamma_{ab} \sim \int d^{n}y \sqrt{h} \left( \operatorname{tr} \left( h^{-1} \partial_{\varphi_{a}} h \ h^{-1} \partial_{\varphi_{b}} h \right) - \operatorname{tr} \left( h^{-1} \partial_{\varphi_{a}} B \ h^{-1} \partial_{\varphi_{b}} B \right) \right)$$

$$= \frac{1}{2} \operatorname{tr} \left[ (\mathcal{H}^{-1} \partial_{\varphi_{a}} \mathcal{H})^{2} \right] \qquad O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - Bh^{-1}B & Bh^{-1} \\ -h^{-1}B & h^{-1} \end{pmatrix}$$

So by O(d,d) invariance  $\gamma_{ab}$  is invariant under (abelian) T-duality.

[SD, Lüst, TR '23]

Example: 
$$S^3$$
 with  $k(x)=R^2(x)$  T-duality  $\tilde{E}$ 

$$ilde{\mathbf{E}}$$
 ...modulus only in spacetime metric h  $\gamma_{RR}$  obtained in standard way from "deWitt" metric

$$B = -\frac{R^2 \cos(\eta) \mathrm{d}\xi_1 \wedge \mathrm{d}\xi_2}{\mathrm{S}_{\mathbf{R}}^3 \text{ with } [\mathbf{H}] = \mathbf{k} = \mathbf{R}^2 \quad ... \text{modulus in h and B}}$$
 also contribution  $\mathrm{tr} \big( h^{-1} \partial_{\varphi_a} B \ h^{-1} \partial_{\varphi_b} B \big) \neq 0 \subset \gamma_{RR}$ 

 $H = R^2 \sin(\eta) d\eta \wedge d\xi_1 \wedge d\xi_2$ 

Metric on moduli space given by

$$\gamma_{ab} \sim \int d^{n}y \sqrt{h} \left( \operatorname{tr} \left( h^{-1} \partial_{\varphi_{a}} h \ h^{-1} \partial_{\varphi_{b}} h \right) - \operatorname{tr} \left( h^{-1} \partial_{\varphi_{a}} B \ h^{-1} \partial_{\varphi_{b}} B \right) \right)$$

$$= \frac{1}{2} \operatorname{tr} \left[ (\mathcal{H}^{-1} \partial_{\varphi_{a}} \mathcal{H})^{2} \right] \qquad O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - Bh^{-1}B & Bh^{-1} \\ -h^{-1}B & h^{-1} \end{pmatrix}$$

So by O(d,d) invariance  $\gamma_{ab}$  is invariant under (abelian) T-duality.

[SD, Lüst, TR '23]

Example: 
$$S^3$$
 with  $k(x)=R^2(x)$  T-duality  $\tilde{E}$ 

 $\tilde{\mathbf{E}} \quad ... \text{modulus only in spacetime metric h} \\ \gamma_{RR} \text{ obtained in standard way from "deWitt" metric} \\ \begin{cases} \mathbf{S}_{\mathbf{R}}^3 \text{ with } [\mathbf{H}] = \mathbf{k} = \mathbf{R}^2 \quad ... \text{modulus in h and B} \\ \text{also contribution } \operatorname{tr} \left( h^{-1} \partial_{\varphi_a} B \ h^{-1} \partial_{\varphi_b} B \right) \neq 0 \subset \gamma_{RR} \end{cases}$ 

 $\tilde{\gamma}_{RR} = \gamma_{RR}$  only if flux variation are taken into account

c.f also [Li,Palti,Petri '23] & [Palti,Petri '24]

7/9

 $H = R^2 \sin(\eta) d\eta \wedge d\xi_1 \wedge d\xi_2$ 

Manifold, e.g. a torus



non-geometric background





diffeomorphism







Manifold, e.g. a torus



non-geometric background





diffeomorphism









$$f \in \left\{ egin{array}{ll} Diff(M) & : \ Riemannian \\ Diff(M) \cup \ T-duality & : \ non-geometric \end{array} 
ight.$$

... described locally by Riemannian geometry with fluxes.

However, transition functions are allowed to be T-dualities.

Manifold, e.g. a torus



non-geometric background





diffeomorphism







Perform the field redefinition:

$$(g+B)^{-1} = (\tilde{g}^{-1} + \beta)$$



$$f \in \left\{ egin{array}{ll} Diff(M) & : \ Riemannian \\ Diff(M) \cup \ \mbox{T-duality} & : \ \mbox{non-geometric} \end{array} \right.$$

... described locally by Riemannian geometry with fluxes. However, transition functions are allowed to be T-dualities.

$$\mathcal{L}_{\beta} = \mathcal{L}_{NSNS} + \partial(...)$$
 ...  $\beta$ -supergravity action

Manifold, e.g. a torus







diffeomorphism



Perform the field redefinition:



 $(g+B)^{-1} = (\tilde{g}^{-1} + \beta)$ 







... described locally by Riemannian geometry with fluxes. However, transition functions are allowed to be T-dualities.

$$\mathcal{L}_{\beta} = \mathcal{L}_{NSNS} + \partial(...)$$
 ...  $\beta$ -supergravity action

Crucial to use 8-supergravity for consitency of non-geometry backgrounds & geometric duals:

A consistent picture between a (globally) non-geometric space and its geometric dual - i.e. matching moduli spaces, potentials and towers of states can be established only after moving to the  $\beta$ -frame, where the background is well-defined.

[SD, Lüst, TR '23]

## Summary & Conclusions

- > Studied Distance Conjecture for curved compact spaces (with fluxes)
- ▶ Invariance of the metric on moduli space under (abelian) T-duality
- ▶ Interplay of scalar potential and Distance Conjecture & absence of tower of states
- First step towards non-geometric backgrounds and associated distance on moduli space



# work in progress

## Summary & Conclusions

- > Studied Distance Conjecture for curved compact spaces (with fluxes)
- ▶ Invariance of the metric on moduli space under (abelian) T-duality
- ▶ Interplay of scalar potential and Distance Conjecture & absence of tower of states
- First step towards non-geometric backgrounds and associated distance on moduli space





- $\triangleright$  More realistic setups: full 10d backgrounds, e.g.  $AdS_5 \times S^5, AdS_4 \times T^6$  with fluxes,...
- Deformations and generalized T-duality (Poisson-Lie T-duality)
- > Truly non-geometric spaces and the Swampland?

## **Summary & Conclusions**

- > Studied Distance Conjecture for curved compact spaces (with fluxes)
- ▶ Invariance of the metric on moduli space under (abelian) T-duality
- ▷ Interplay of scalar potential and Distance Conjecture & absence of tower of states
- First step towards non-geometric backgrounds and associated distance on moduli space





- $\triangleright$  More realistic setups: full 10d backgrounds, e.g.  $AdS_5 \times S^5, AdS_4 \times T^6$  with fluxes,...
- Deformations and generalized T-duality (Poisson-Lie T-duality)
- > Truly non-geometric spaces and the Swampland?

