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2) Implications for  
Distance Conjecture

1) T-duality* on  
internal space 
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▷  Moduli spaces with (NSNS) flux contributions 
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In any consistent theory of quantum gravity: 
  

When going to large distances in its moduli space,  
encounter an infinite tower of states which become light exponentially 

[Ooguri, Vafa ’06]

M(Q) ∼ M(P)e−λΔϕ Δϕ ≡ d(P, Q)Δϕ → ∞ ,when

Δϕ → ∞

Moduli space Q

P

describes the parameters  
of the internal space 

Recap: Distance Conjecture &  S1
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S =
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1
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HIJKHIJK + 4∂IΦ∂IΦ)
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Do these properties modify the Swampland Distance Conjecture?
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Example:  with -flux S3 H

ds2 = R2(dη2 + dξ2
1 + dξ2

2 + 2 cos(η)dξ2
1dξ2

2)
H = k sin(η)dη ∧ dξ1 ∧ dξ2

SEH ∼ ∫ ddx −g(ℛ(g) − γab∂μφa∂μφb − V(φa))
V(R; k) = −

3
2R2

+
k2

R6

γRR =
3

R2
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H

 with  S3
R [H] = k with [H̃] = 1

S1
1/R ↪ Ẽ

S2
R

along Hopf-fiber

T-duality 
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RS1
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‣T-duality:
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c1(S3) = 1 c1(Ẽ) = k
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π1(Ẽ) = ℤk
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winding ∈ ℤk
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 with  S3
R [H] = k

V(R; k) = −
3

2R2
+

k2

R6

γRR =
3

R2

Apparent inconsistency:  with appropriately tuned H-flux is valid string background  
and therefore should be in the Landscape
S3

However there is no tower of light states for R  0  
which is an infinite distance limit

→

‣Distance Conjecture:
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→
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V(R; k)

R = k

R
In effective field theories that can be lifted to a theory of quantum gravity in the UV,  

a divergence in the scalar potential emerges when approaching an infinite locus point  
for which the target space geometry cannot give rise to a light tower of states.  

That is, the potential signals pathological infinite distance loci in the scalar field space.

[SD, Lüst, TR ’23]

‣Distance Conjecture:
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O(d, d) ∋ ℋ = (h − Bh−1B Bh−1

−h−1B h−1 )
So by  invariance   is invariant under (abelian) T-duality.O(d, d) γab

Metric on moduli space given by 

=
1
2

tr[(ℋ−1∂φa
ℋ)2]

γab ∼ ∫ dny h(tr(h−1∂φa
h h−1∂φb

h) − tr(h−1∂φa
B h−1∂φb

B))

[SD, Lüst, TR ’23]

‣Invariance of metric & flux variations:
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…modulus in h and B
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c.f also [Li,Palti,Petri ’23] & [Palti,Petri ’24]

[SD, Lüst, TR ’23]
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: Riemannian
f ∈

Diff(M) ∪ T-duality

Diff(M){

(g + B)−1 = (g̃−1 + β) ℒβ = ℒNSNS + ∂(…)Perform the field redefinition:

Crucial to use β-supergravity for consitency of non-geometry backgrounds & geometric duals:

… β-supergravity action

A consistent picture between a (globally) non-geometric space and its geometric dual 
 - i.e. matching moduli spaces, potentials and towers of states - 

can be established only after moving to the -frame, where the background is well-defined.β
[SD, Lüst, TR ’23]
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Summary & Conclusions

▷ Studied Distance Conjecture for curved compact spaces (with fluxes) 

▷ Invariance of the metric on moduli space under (abelian) T-duality 

▷ Interplay of scalar potential and Distance Conjecture & absence of tower of states 

▷ First step towards non-geometric backgrounds and associated distance on moduli space 
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▷More realistic setups: full 10d backgrounds, e.g.  with fluxes,… 

▷ Flux variations & potential: on-shell vs off-shell [Li,Palti,Petri ’23] & [Palti,Petri ’24] 

▷Deformations and generalized T-duality (Poisson-Lie T-duality) 

▷ Truly non-geometric spaces and the Swampland?

AdS5 × S5, AdS4 × T6 w
ork in progress
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