Topology change and non-geometry at infinite distance

[Saskia Demulder, Dieter Lüst, **TR**; **2312.07674**]

Thomas Raml

String Phenomenology 24 Padova, 27.06.2024

G

Non-trivial fibrations / Curved manifolds \rightarrow T-duality

 $H = dB$, $F = dC$

CA

CA

[▷] Non-geometric backgrounds

$\Delta \phi \rightarrow \infty$ **Moduli space** *^Q P*

 When going to **large distances in its moduli space**, encounter an **infinite tower of states** which **become light** exponentially

 $M(Q) \sim M(P)e^{-\lambda \Delta \phi}$ when $\Delta \phi \rightarrow \infty$, $\Delta \phi \equiv d(P, Q)$

describes the parameters of the internal space

> When going to **large distances in its moduli space**, encounter an **infinite tower of states** which **become light** exponentially

 $M(Q) \sim M(P)e^{-\lambda \Delta \phi}$ when $\Delta \phi \rightarrow \infty$, $\Delta \phi \equiv d(P, Q)$

Δ*ϕ* → ∞ **Moduli space** *^Q P*

describes the parameters of the internal space

MAX PLANCK INSTITUTE

 $R = 0$ *R* → ∞

infinite distance point infinite distance point

$$
S_{\rm EH} \sim \int d^{D-1}x \sqrt{-g} \left(\mathcal{R}(g) - \frac{c}{R^2} (\partial R)^2 \right)
$$

) **Example:** Circle compactification

> When going to **large distances in its moduli space**, encounter an **infinite tower of states** which **become light** exponentially

 $M(Q) \sim M(P)e^{-\lambda \Delta \phi}$ when $\Delta \phi \rightarrow \infty$, $\Delta \phi \equiv d(P, Q)$

For $R\to 0$ **Infinite tower** of massless **KK**-modes & m_{KK}^2 \sim 1 *R*2

Δ*ϕ* → ∞ **Moduli space** *^Q P*

describes the parameters of the internal space

MAX PLANCK INSTITUTE

 $R = 0$ *R* → ∞

infinite distance point infinite distance point

For
$$
R \to \infty
$$

Infinite tower of
massless winding-modes
 $m_w^2 \sim R^2$

Example: Circle compactification

$$
S_{\rm EH} \sim \int d^{D-1}x \sqrt{-g} \left(\mathcal{R}(g) - \frac{c}{R^2} (\partial R)^2 \right)
$$

> When going to **large distances in its moduli space**, encounter an **infinite tower of states** which **become light** exponentially

 $M(Q) \sim M(P)e^{-\lambda \Delta \phi}$ when $\Delta \phi \rightarrow \infty$, $\Delta \phi \equiv d(P, Q)$

For $R\to 0$ **Infinite tower** of massless **KK**-modes For $R \to \infty$ **Infinite tower** of massless **winding**-modes & m_w^2 ∼ R^2 m_{KK}^2 \sim 1

Δ*ϕ* → ∞ **Moduli space** *^Q P*

describes the parameters of the internal space

MAX PLANCK INSTITUTE

Example: Circle compactification

$$
S_{\rm EH} \sim \int d^{D-1}x \sqrt{-g} \left(\mathcal{R}(g) - \frac{c}{R^2} (\partial R)^2 \right)
$$

MAX PLANCK INSTITUTE

$$
S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \left(\mathcal{R}(G) - \frac{1}{12} H_{IJK} H^{IJK} + 4\partial_I \Phi \partial^I \right)
$$

$$
G(x, y) = g(x) \oplus h(y, \varphi^a(x))
$$

$$
S \sim \int d^{D-n} x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - \frac{V(\varphi^a)}{V(\varphi^a)} \right)
$$

metric

$$
= \int d^{D-n} x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - \frac{V(\varphi^a)}{V(\varphi^a)} \right)
$$

note

$$
= \int d^D x \sqrt{h} \left(\mathbf{r} (h^{-1} \partial_{\varphi_a} h h^{-1} \partial_{\varphi_b} h) - \mathbf{r} (h^{-1} \partial_{\varphi_a} B h^{-1} \partial_{\varphi_b} B) \right)
$$

Moduli space

 $V(\varphi^i)$

$$
S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \left(\mathcal{R}(G) - \frac{1}{12} H_{IJK} H^{IJK} + 4\partial_I \Phi \partial^I \right)
$$

$$
G(x, y) = g(x) \oplus h(y, \varphi^a(x))
$$

$$
S \sim \int d^{D-n} x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - \frac{V(\varphi^a)}{V(\varphi^a)} \right)
$$

metric

$$
= \int d^{D-n} x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - \frac{V(\varphi^a)}{V(\varphi^a)} \right)
$$

note

$$
= \int d^D x \sqrt{h} \left(\mathbf{r} (h^{-1} \partial_{\varphi_a} h h^{-1} \partial_{\varphi_b} h) - \mathbf{r} (h^{-1} \partial_{\varphi_a} B h^{-1} \partial_{\varphi_b} B) \right)
$$

Moduli space

A much more challenging question…

 $\gamma_{ab} \sim \int d^2x$

 $V(\varphi^i)$

G

A much more challenging question…

[▷] Backgrounds display **curvature and/or fluxes**: sources a **scalar potential**

A much more challenging question…

-
- [▷] Under T-duality may display **changes in topology**

A much more challenging question…

-
- [▷] Under T-duality may display **changes in topology**

[▷] **Non-geometric backgrounds**

A much more challenging question…

-
- [▷] Under T-duality may display **changes in topology**

[▷] **Non-geometric backgrounds**

Example: S^3 with H -flux

$$
S_{\text{EH}} \sim \int d^d x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - V(\varphi^a) \right)
$$

$$
ds^2 = R^2 (d\eta^2 + d\xi_1^2 + d\xi_2^2 + 2 \cos(\eta) d\xi_1^2 d\xi_2^2)
$$

$$
H = k \sin(\eta) d\eta \wedge d\xi_1 \wedge d\xi_2
$$

$$
W(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}
$$

Topology change and non-geometry at infinite distance **Thomas Raml** and Thomas Raml

4/9

Example: S^3 with H -flux

 $S_{\text{EH}} \sim \int d^d x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - V(\varphi^a) \right)$ $\left\{ \frac{1}{2} \right\}$

 $ds^2 = R$

 $\pi_1(S^3) = 0$

Company

$$
\gamma_{RR} = \frac{3}{R^2}
$$

\n
$$
V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}
$$

\n
$$
V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}
$$

 $H = k \sin(\eta) d\eta \wedge d\xi_1 \wedge d\xi_2$

4/9

Example: S^3 with H -flux

 $S_{\text{EH}} \sim \int d^d x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - V(\varphi^a) \right)$ $\left\{ \frac{1}{2} \right\}$

 $ds^2 = K$

 $\pi_1(S^3) = 0$

B

$$
\gamma_{RR} = \frac{3}{R^2}
$$

\n
$$
V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}
$$

\n
$$
V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}
$$

 $H = k \sin(\eta) d\eta \wedge d\xi_1 \wedge d\xi_2$

How is **absence of winding modes** compatible with **T-duality**?

What does this mean for the **Swampland Distance Conjecture**?

4/9

MAX PLANCK INSTITUTE 74.47

OF

$$
\gamma_{RR} = \frac{3}{R^2}
$$

$$
V(R; k) = -\frac{3}{2R^2} +
$$

Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background and therefore should be in the **Landscape**

Company

However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

‣Distance Conjecture:

Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background and therefore should be in the **Landscape**

CA

However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

…need to **take into account scalar potential**

‣Distance Conjecture:

Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background and therefore should be in the **Landscape**

> However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

> > …need to **take into account scalar potential**

In **effective field theories** that **can be lifted to a theory of quantum gravity** in the UV, a **divergence in the scalar potential** emerges when approaching an **infinite locus point** for which the target space geometry **cannot give rise to a light tower of states**.

That is, the **potential signals pathological infinite distance loci** in the scalar field space.

[SD, Lüst, TR '23]

‣Distance Conjecture:

$$
\gamma_{ab} \sim \int d^n y \sqrt{h} \Big(tr \Big(h^{-1} \partial_{\varphi_a} h \ h^{-1} \partial_{\varphi_b} h \Big) - tr \Big(h^{-1} \partial_{\varphi_a} B \ h^{-1} \partial_{\varphi_b} B \Big) \Big)
$$

= $\frac{1}{2} tr \Big[(\mathcal{H}^{-1} \partial_{\varphi_a} \mathcal{H})^2 \Big]$ $O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - B h^{-1} B & 1 \\ -h^{-1} B & 1 \end{pmatrix}$

So by $O(d, d)$ invariance γ_{ab} is invariant under (abelian) **T-duality**.

Metric on moduli space given by

[SD, Lüst, TR '23]

$$
\gamma_{ab} \sim \int d^n y \sqrt{h} \left(\text{tr} \left(h^{-1} \partial_{\varphi_a} h h^{-1} \partial_{\varphi_b} h \right) - \text{tr} \left(h^{-1} \partial_{\varphi_a} B h^{-1} \partial_{\varphi_b} B \right) \right)
$$

=
$$
\frac{1}{2} \text{tr} \left[\left(\mathcal{H}^{-1} \partial_{\varphi_a} \mathcal{H} \right)^2 \right]
$$

$$
O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - Bh^{-1}B & Bh^{-1} \\ -h^{-1}B & h^{-1} \end{pmatrix}
$$

So by $O(d, d)$ invariance γ_{ab} is invariant under (abelian) **T-duality**.

Metric on moduli space given by

E˜ …modulus only in spacetime metric h

 γ_{RR} obtained in standard way from "deWitt" metric

Example:
$$
S^3
$$
 with $k(x)=R^2(x)$
Example: S^3 with $k(x)=R^2(x)$

[SD, Lüst, TR '23]

Metric on moduli space given by

$$
\gamma_{ab} \sim \int d^n y \sqrt{h} \Big(\text{tr} \big(h^{-1} \partial_{\varphi_a} h h^{-1} \partial_{\varphi_b} h \big) - \text{tr} \big(h^{-1} \partial_{\varphi_a} B h^{-1} \partial_{\varphi_b} B \big) \Big)
$$
\n
$$
= \frac{1}{2} \text{tr} \big[(\mathcal{H}^{-1} \partial_{\varphi_a} \mathcal{H})^2 \big] \qquad O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - Bh^{-1}B & Bh^{-1} \\ -h^{-1}B & h^{-1} \end{pmatrix}
$$
\nant under (abelian) T-duality.

\n[SD, Lüst, TR '23]

\n
$$
\rightarrow \tilde{E}
$$
\n
$$
H = R^2 \sin(\eta) d\eta \wedge d\xi_1 \wedge d\xi_2
$$
\n
$$
B = -R^2 \cos(\eta) d\xi_1 \wedge d\xi_2
$$
\nme metric h

\nWitt" metric

\n
$$
\Bigg\{ \begin{array}{c} \mathbf{S}_R^3 \text{ with } [\mathbf{H}] = \mathbf{k} = \mathbf{R}^2 \quad \text{...modulus in } \mathbf{h} \text{ and } \mathbf{B} \\ \text{also contribution } \text{tr} \big(h^{-1} \partial_{\varphi_a} B h^{-1} \partial_{\varphi_b} B \big) \neq 0 \subset \gamma_{RR} \end{array}
$$

So by $O(d, d)$ invariance γ_{ab} is invariantly.

Example:
$$
S^3
$$
 with $k(x)=R^2(x)$
Example: S^3 with $k(x)=R^2(x)$

 $\tilde{\mathbf{E}}$ **E** …modulus only in spaceting

 γ_{RR} obtained in standard way from "deW

Metric on moduli space given by

$$
\gamma_{ab} \sim \int d^n y \sqrt{h} \Big(\text{tr} \big(h^{-1} \partial_{\varphi_a} h \ h^{-1} \partial_{\varphi_b} h \big) - \text{tr} \big(h^{-1} \partial_{\varphi_a} B \ h^{-1} \partial_{\varphi_b} B \big) \Big)
$$
\n
$$
= \frac{1}{2} \text{tr} \big[(\mathcal{H}^{-1} \partial_{\varphi_a} \mathcal{H})^2 \big] \qquad O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - Bh^{-1}B & B \\ -h^{-1}B & B \end{pmatrix}
$$
\n
$$
\Rightarrow \tilde{E}
$$
\n
$$
= \frac{1}{2} \text{tr} \big[(\mathcal{H}^{-1} \partial_{\varphi_a} \mathcal{H})^2 \big]
$$
\n
$$
\big[SD, \text{List, TR '23]}
$$
\n
$$
= \frac{1}{2} \text{tr} \big[(\mathcal{H}^{-1} \partial_{\varphi_a} \mathcal{H})^2 \big]
$$
\n
$$
\Rightarrow \tilde{E}
$$
\n
$$
= \frac{1}{2} R^2 \sin(\eta) d\eta \wedge d\xi_1
$$
\n
$$
= \frac{1}{2} R^2 \sin(\eta) d\eta \wedge d\xi_1
$$
\n
$$
\Rightarrow \tilde{E}
$$
\n
$$
= \frac{1}{2} R^2 \cos(\eta) d\xi_1 \wedge d\xi_1
$$
\n
$$
\Rightarrow \text{Nitt}'' \text{ metric}
$$
\n
$$
\bigg\{ \begin{array}{c} S_R^3 \text{ with } [\mathbf{H}] = \mathbf{k} = \mathbf{R}^2 \quad \text{...modulus in } \mathbf{h} \text{ and } \mathbf{B} \\ \text{also contribution tr} \big(h^{-1} \partial_{\varphi_a} B \ h^{-1} \partial_{\varphi_b} B \big) \neq 0 \subset \gamma_{RR} \end{array}
$$

So by $O(d, d)$ invariance γ_{ab} is invarian

Example:
$$
S^3
$$
 with $k(x)=R^2(x)$
Example: S^3 with $k(x)=R^2(x)$

 $\tilde{\mathbf{E}}$... modulus only in spaceting

 γ_{RR} obtained in standard way from "deW

 $\tilde{\gamma}_{RR} = \gamma_{RR}$ only if **flux variation** are taken into account

c.f also [Li,Palti,Petri '23] & [Palti,Petri '24]

Topology change and non-geometry at infinite distance **Thomas Raml** and the state of the state of the Thomas Raml

… described locally by Riemannian geometry with fluxes. However, **transition functions** are allowed to be **T-dualities.**

… described locally by Riemannian geometry with fluxes. However, **transition functions** are allowed to be **T-dualities.**

MAX PLANCK INSTITUTE

 P erform the field redefinition:

MAX PLANCK INSTITUTE

 $(g + B)^{-1} = (\tilde{g})$

However, **transition functions** are allowed to be **T-dualities.**

 $\mathscr{L}_{\beta} = \mathscr{L}_{NSNS} + \partial(\ldots)$... *ß***-supergravity action**

Crucial to **use** *β***-supergravity** for consitency of **non-geometry backgrounds & geometric duals:**

A **consistent picture** between a (globally) non-geometric space and its geometric dual - i.e. matching moduli spaces, potentials and towers of states -

can be established **only after moving to the** *β***-frame**, where the background is well-defined.

[SD, Lüst, TR '23]

Summary & Conclusions

- [▷] Studied **Distance Conjecture** for **curved compact spaces (with fluxes)**
- [▷] **Invariance** of the metric on moduli space **under (abelian) T-duality**
- [▷] Interplay of **scalar potential** and Distance Conjecture & **absence of tower of states**
- [▷] First step towards **non-geometric backgrounds** and associated distance on moduli space

Summary & Conclusions

- [▷] Studied **Distance Conjecture** for **curved compact spaces (with fluxes)**
- [▷] **Invariance** of the metric on moduli space **under (abelian) T-duality**
- [▷] Interplay of **scalar potential** and Distance Conjecture & **absence of tower of states**
- [▷] First step towards **non-geometric backgrounds** and associated distance on moduli space

- \triangleright More **realistic setups: full 10d backgrounds**, e.g. $AdS_5 \times S^5$, $AdS_4 \times T^6$ with fluxes,...
- [▷] Flux variations & potential: **on-shell vs off-shell** [Li,Palti,Petri '23] & [Palti,Petri '24]
- ▷ **Deformations and generalized T-duality** (Poisson-Lie T-duality)
- ▷ **Truly non-geometric spaces** and the Swampland?

Summary & Conclusions

- [▷] Studied **Distance Conjecture** for **curved compact spaces (with fluxes)**
- [▷] **Invariance** of the metric on moduli space **under (abelian) T-duality**
- [▷] Interplay of **scalar potential** and Distance Conjecture & **absence of tower of states**
- [▷] First step towards **non-geometric backgrounds** and associated distance on moduli space

- \triangleright More **realistic setups: full 10d backgrounds**, e.g. $AdS_5 \times S^5$, $AdS_4 \times T^6$ with fluxes,...
- [▷] Flux variations & potential: **on-shell vs off-shell** [Li,Palti,Petri '23] & [Palti,Petri '24]
- ▷ **Deformations and generalized T-duality** (Poisson-Lie T-duality)
- ▷ **Truly non-geometric spaces** and the Swampland?

- work in progress work in progress

