M-theoretic Emergence

String Pheno 2024 in Padova - June 27 - Aleksandar Gligovic

MAX-PLANCK-INSTIT FÜR PH

ылындак Based on 2309.11551 and 2309.11554

in collaboration with R. Blumenhagen, N. Cribiori and A. Paraskevopoulou

Emergence in Quantum Gravity?

kinetic terms arise in IR by integrating out towers of states down from a UV scale Λ .

[Heidenreich, Reece, Rudelius '17], [Grimm, Palti, Valenzuela '19], [Castellano, Herráez, Ibáñez '22] ...

Put very briefly, the Emergence Proposal states that

Emergence in Quantum Gravity?

kinetic terms arise in IR by integrating out towers of states down from a UV scale Λ .

[Heidenreich, Reece, Rudelius '17], [Grimm, Palti, Valenzuela '19], [Castellano, Herráez, Ibáñez '22] ...

Main quest :

carry out an emergence computation where one integrates out the **full tower**

Put very briefly, the Emergence Proposal states that

Sub-quests :

- define a limit, identify perturbative states
- find "simple" setup + amplitude
- find a suitable regularization

Plan for the talk

Framework and M-theory limit

Emergence of the one-loop free energy

Setup : type IIA on CY₃ (Y) $\longrightarrow N = 2$ supersymmetry in 4D with $\mathcal{M} = \mathcal{M}_{VMP} \times \mathcal{M}_{HMP}$

U(1) gauge fields

$h_{11}(Y)$ from C_3 (in VMP)

1 from C_1 (in gravity multiplet)

	Scalars VMPs	Scalars HMPs
	Kähler moduli	CS moduli <i>z^k</i> +
	$T^i = t^i + ib^i$	$S = \rho + i\sigma$

U(1) gauge fields

$h_{11}(Y)$ from C_3 (in VMP)

1 from C_1 (in gravity multiplet)

Higher-derivative corrections encoded

 \mathcal{F}_{g} 's related to topological string amplitudes [BCOV '94] & are 1/2 BPS-saturated

Setup : type IIA on CY₃ (Y) $\longrightarrow N = 2$ supersymmetry in 4D with $\mathcal{M} = \mathcal{M}_{VMP} \times \mathcal{M}_{HMP}$

	Scalars VMPs	Scalars HMPs
	Kähler moduli	CS moduli <i>z^k</i> +
	$T^i = t^i + ib^i$	$S = \rho + i\sigma$

$$\lim \mathcal{F} = \sum_{g=0}^{\infty} \mathcal{F}_g W^{2g} \text{ with } \mathcal{F}_g \text{ at order } g_s^{2g-2}$$

Free energy at genus 0 and 1

$$\mathcal{F}_{0} = -\frac{1}{g_{s}^{2}} \left[\frac{1}{6} C_{ijk} T^{i} T^{j} T^{k} + \frac{\zeta(3)}{2} \chi(Y) - \sum_{\beta \in H_{2}(Y,\mathbb{Z})} \downarrow_{\alpha_{0}^{\beta}}^{\beta} \operatorname{Li}_{3}(e^{-\beta \cdot T}) \right] \to \operatorname{kin}_{\beta \in H_{2}(Y,\mathbb{Z})} \left[\mathcal{F}_{1} = -\frac{1}{24} c_{2,i} T^{i} - \sum_{\beta \in H_{2}(Y,\mathbb{Z})} \left(\frac{\alpha_{0}^{\beta}}{12} + \alpha_{1}^{\beta} \right) \operatorname{Li}_{1}(e^{-\beta \cdot T}) \right]$$

We were particularly interested in the free energy at genus 0 and genus 1

etic terms of VMPs

Free energy at genus 0 and 1

$$\mathcal{F}_{0} = -\frac{1}{g_{s}^{2}} \left[\frac{1}{6} C_{ijk} T^{i} T^{j} T^{k} + \frac{\zeta(3)}{2} \chi(Y) - \sum_{\beta \in H_{2}(Y,\mathbb{Z})} \overset{\text{Gopakumar-Vafa Invariants}}{a_{0}^{\beta}} \operatorname{Li}_{3}(e^{-\beta \cdot T}) \right] \rightarrow \text{kinetic terms of VMPs}$$
$$\mathcal{F}_{1} = -\frac{1}{24} c_{2,i} T^{i} - \sum_{\beta \in H_{2}(Y,\mathbb{Z})} \left(\frac{\alpha_{0}^{\beta}}{12} + \alpha_{1}^{\beta} \right) \operatorname{Li}_{1}(e^{-\beta \cdot T})$$

We were particularly interested in the free energy at genus 0 and genus 1

Emergence computation for \mathcal{F}_0 also tackled in [Hattab, Palti '23 & '24]

computation of $\mathcal{F}_g(g > 1)$ already in [Gopakumar, Vafa '98], albeit with different motivation

Limit and perturbative states

- Study **M-theory** limit for Type IIA on $\mathbb{R}^{1,3} \times Y$. Take $g_s \to \lambda g_s$ with $\lambda \to \infty$
 - such that (i) $M_{\text{pl}}^{(4)} = \text{const.}$ and (ii) $M_*^6 V_6 = \text{const.}$ 11D Planck scale

Limit and perturbative states

Study **M-theory** limit for Type IIA on $\mathbb{R}^{1,3} \times Y$. Take $g_s \to \lambda g_s$ with $\lambda \to \infty$

such that (i) $M_{\text{pl}}^{(4)} = \text{const.}$ and (ii) $M_*^6 V_6 = \text{const.}$ 11D Planck scale

Limit and perturbative states

Study **M-theory** limit for Type IIA on $\mathbb{R}^{1,3} \times Y$. Take $g_s \to \lambda g_s$ with $\lambda \to \infty$

such that (i) $M_{\text{pl}}^{(4)} = \text{const.}$ and (ii) $M_*^6 V_6 = \text{const.}$ 11D Planck scale

Guiding principle: $m_{\text{pert}} = g^{\alpha} \tilde{\Lambda}$, $m_{\text{non-pert}} = \tilde{\Lambda}/g^{\beta}$ with $g_E = r_{11}^{-1} \ll 1$ and $\alpha \ge 0$, $\beta > 0$

The Gopakumar-Vafa (GV) formula

$$\sum_{g=0}^{\infty} \mathscr{F}_{g} W^{2g} = \sum_{\vec{\beta}, r, n} \alpha_{r}^{\vec{\beta}} \int_{0}^{\infty} \frac{ds}{s} \frac{W}{(2i\sinh(sW))}$$

- [Gopakumar, Vafa '98]: \mathcal{F}_{g} 's can be determined from 1-loop calculation, with constant, self-dual
 - background of the graviphoton

contributions for $r \leq g$ Integrate out **D2/D0's** with $Z_{\vec{\beta},n} = \frac{M_s}{g_s} \left(\vec{\beta} \cdot \vec{T} + in \right)$ $\frac{\sqrt{2}}{(W/2)^{2-2r}}e^{-sZ_{\vec{\beta},n}}$

The Gopakumar-Vafa (GV) formula

$$\sum_{g=0}^{\text{contributions for } r \leq g} W^{2g} = \sum_{\vec{\beta}, r, n} \alpha_r^{\vec{\beta}} \int_0^\infty \frac{ds}{s} \frac{W^2}{(2i\sinh(sW/2))^{2-2r}} e^{-sZ_{\vec{\beta},n}} e^{-sZ_{\vec{\beta},n}} \qquad \text{Integrate out } D2/D0's \text{ with}$$

$$Z_{\vec{\beta},n} = \frac{M_s}{g_s} \left(\vec{\beta} \cdot \vec{T} + in\right)$$

- [Gopakumar, Vafa '98]: \mathcal{F}_g 's can be determined from 1-loop calculation, with constant, self-dual
 - background of the graviphoton

- First observations: expect also *NS5* and *KK* to contribute, but uncharged under VMP
 - for g = 0 and g = 1 need a UV regulator

Plan for the talk

Framework and M-theory limit

Emergence of the one-loop free energy

$$\mathscr{F}_1 = -\frac{1}{12} \sum_{n \in \mathbb{Z}} \int_{\boldsymbol{\epsilon}}^{\infty} \frac{ds}{s} e^{-sZ_n} \quad \text{with} \quad Z_n = \frac{M_{\text{pl}}}{\mathscr{V}^{1/2}} (T+in)$$

The genus 1 free energy

We study the resolved conifold (one rigid 2-cycle, $\alpha_0^1 = 1$). The GV formula for g = 1 gives

$$\mathscr{F}_1 = -\frac{1}{12} \sum_{n \in \mathbb{Z}} \int_{\epsilon}^{\infty} \frac{ds}{s} e^{-sZ_n} \quad \text{with} \quad Z_n = \frac{M_{\text{pl}}}{\mathscr{V}^{1/2}} (T+in)$$

1st we integrate and expand in ϵ : \mathcal{F}

The genus 1 free energy

We study the resolved conifold (one rigid 2-cycle, $\alpha_0^1 = 1$). The GV formula for g = 1 gives

$$\mathcal{L}_{1}^{D0,D2} = \frac{1}{12} \sum_{n \in \mathbb{Z}} \left(\gamma_E + \log(\epsilon) + \log(Z_n) + \mathcal{O}(\epsilon) \right)$$

$$\mathscr{F}_1 = -\frac{1}{12} \sum_{n \in \mathbb{Z}} \int_{\epsilon}^{\infty} \frac{ds}{s} e^{-sZ_n} \quad \text{with} \quad Z_n = \frac{M_{\text{pl}}}{\mathscr{V}^{1/2}} (T+in)$$

1st we integrate and expand in ϵ : \mathcal{F}

We are left with:
$$\mathscr{F}_1^{D0,D2} = \frac{1}{12} \sum_{n \in \mathbb{Z}} \log \left(\frac{T + in}{\mu(\mathcal{V}, \epsilon)} \right)$$
 ... now use **analytic continuation** of $\zeta(s)$

The genus 1 free energy

We study the resolved conifold (one rigid 2-cycle, $\alpha_0^1 = 1$). The GV formula for g = 1 gives

$${}^{D0,D2}_{1} = \frac{1}{12} \sum_{n \in \mathbb{Z}} \left(\gamma_E + \log(\epsilon) + \log(Z_n) + \mathcal{O}(\epsilon) \right)$$

Result and interpretation

$$\mathscr{F}_{1}^{D2-D0} = \frac{2\pi T}{24} - \frac{1}{12} \sum_{m \ge 1} \frac{1}{m} e^{-2\pi m T} = \frac{2\pi}{24} \left(\frac{t}{g_{E}} + ib\right) - \frac{1}{12} \sum_{m \ge 1} \frac{1}{m} e^{-2\pi m (\frac{t}{g_{E}} + ib)}$$

... emergent theory has perturbative- $\mathbb{F}_1 \simeq N_{cn}$ as proposed ir

- ... emergent theory has perturbative-like expansion in $g_E \simeq 1/\lambda \simeq 1/N_{\rm sp}$. Indeed,
 - $\mathbb{F}_1 \simeq N_{sp}$ as proposed in [van de Heisteeg, Vafa, Wiesner, Wu '22]

Result and interpretation

$$\mathscr{F}_{1}^{D2-D0} = \frac{2\pi T}{24} - \frac{1}{12} \sum_{m \ge 1} \frac{1}{m} e^{-2\pi m T} = \frac{2\pi}{24} \left(\frac{t}{g_{E}} + ib\right) - \frac{1}{12} \sum_{m \ge 1} \frac{1}{m} e^{-2\pi m (\frac{t}{g_{E}} + ib)}$$

 $\mathbb{F}_1 \simeq N_{sp}$ as proposed in [van de Heisteeg, Vafa, Wiesner, Wu '22]

With the same techniques one

- ... emergent theory has perturbative-like expansion in $g_E \simeq 1/\lambda \simeq 1/N_{sp}$. Indeed,

can compute
$$\mathscr{F}_0 = \sum_{n \in \mathbb{Z}} \int_{\epsilon}^{\infty} \frac{ds}{s^3} e^{-sZ_n}$$

Remaining challenge: how to regularize sum over GV Invariants?

e.g. for a compact CY with $h_{11} = 1$:

Wrap-up and outlook

identify pert. states with $\tilde{\Lambda}$

integrate out P states at 1-loop

 $(M2, M5) \perp S^1 + \text{KK along } S^1$ are perturbative here: GV formula + ζ - function regularization

$$\kappa_{111} \stackrel{?}{\simeq} \sum_{n=1}^{\infty} n^3 \text{GV}_n \text{ with } \text{GV}_n \sim \exp(n)$$

Extra slides

Details about M-theory limit

$$R_{11} \to \lambda R_{11}$$
 , $M_* \to \frac{M_*}{\lambda^{\frac{1}{d-1}}}$, $R_I \to \lambda^{\frac{1}{d-1}} R_I$ with $\lambda \to \infty$

$$M_{D0} \sim \frac{M_s}{g_s} \sim \frac{M_{\rm pl}^{(d)}}{\lambda} \longrightarrow \tilde{\Lambda} \simeq \frac{M_{\rm pl}^{(d)}}{\lambda^{\frac{1}{d-1}}} \sim M_*$$

$$M_{D2,NS5} \sim \frac{M_s}{g_s^{1/3}} \sim \frac{M_{\rm pl}^{(d)}}{\lambda^{\frac{1}{d-1}}} \sim M_*$$

We look at M-theory limits of type IIA on X_k (d + k = 10) to d dimensions

Can be used to compute mass scales of type IIA/M-theory objects