A Deeper Look at the Minimal Weak Gravity Conjecture

Alessandro **Mininno** based on arXiv:2312.04619 [hep-th] with C. F. Cota, T. Weigand and M. Wiesner

II. Institut für Theoretische Physik Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

String Pheno 2024 Padova

June 27, 2024

Tower Weak Gravity Conjecture

Tower Weak Gravity Conjecture

Every U(1) gauge theory coupled to gravity has a tower with infinitely many super-extremal states such that

$$\frac{g_{\rm U(1),\,D}^2 q^2}{m_D^2} \ge \gamma \frac{1}{M_{\rm Pl,\,D}^{D-2}} \,.$$

Motivations

- Consistency under dimensional reduction.¹
- **Obsence** of global symmetries in limit $g_{U(1),D} \rightarrow 0$.

How to satisfy the Weak Gravity Conjecture

- **O** Tower of super-extremal particles: $m_n \leq M_{BH, \min}$ with charge nq.
- Over of super-extremal state above the BH threshold.

¹B. Heidenreich, M. Reece, T. Rudelius, JHEP 02, 140, arXiv: 1509.06374 (hep-th); M. Montero, G. Shiu, P. Soler, JHEP 10, 159, arXiv: 1606.08438 (hep-th); S. Andriolo, D. Junghans, T. Noumi, G. Shiu, Fortsch. Phys. 66, 1800020, arXiv: 1802.04287 (hep-th);

Motivations	Summary of Results	•
The Minimal Weak Gravity Conjec	cture	

The Minimal Weak Gravity Conjecture

Towers of (super-)extremal particle states exist **if and only if** they are required by the WGC under dimensional reduction:

- Emergent string limits,
- Isolaria Kaluza–Klein reductions with KK gauge bosons.
- Strongly coupled limits with exactly extremal states. (?)

Absent Towers

All known cases without established super-extremal tower are consistent:

- Perturbative open string U(1)s.
- F-theory away from emergent string limits.
- Conifold U(1) in M-theory.

(1) ...

0		- 4 -	-	
ັບ	or	ne	m	IS.

1

Definition of Tower of Particles

- 2 Minimal Radius in Quantum Gravity
- 3 Conclusions

1

Definition of Tower of Particles

2) Minimal Radius in Quantum Gravity

Conclusions

Definition of Tower of Particles	Definition of Tower of Particles	0000

Definition of Tower of Particles

The Tower

Super-extremal particle states below the black hole threshold of charge nq, for every charge q in the charge lattice and for any $n \in I_q$, with I_q an infinite index set.

Definition of Tower of Particles	Weak Coupling Limits		0000		
Weak Coupling Limits					
Weak Coupling					
g	$H^2_{\mathrm{U}(1),\mathrm{D}}M^{D-2}_{\mathrm{Pl},\mathrm{D}} \to 0$ and	$\gamma \sim O(1)$			
• The mass of the extremal black hole is set by the WGC scale $\Lambda^2_{WGC,D} = g^2_{U(1),D} M^{D-2}_{PLD} .$					
The weakly-coupled limits correl	espond to infinite distance	limits in modul	i space.		
In decompactification limits, the	e states are below the spec	ies scale , ² i.e.	$M_{\rm PL\infty}^2$.		
In emergent string limits, the W	GC scale should be below	the Planck scal	e.		

Conditions

$$g^2_{\mathrm{U}(1),\,\mathrm{D}} M^{D-4}_{\mathrm{Pl},\,\mathrm{D}} = rac{\Lambda^2_{\mathrm{WGC},\,\mathrm{D}}}{M^2_{\mathrm{Pl},\,\mathrm{D}}} \ll 1 \qquad \mathrm{and} \qquad rac{\Lambda^2_{\mathrm{WGC},\,\mathrm{D}}}{M^2_{\mathrm{Pl},\,\mathrm{o}}} \ll$$

2G. Dvali, Fortsch. Phys. 58, 528-536, arXiv: 0706.2050 (hep-th); G. Dvali, D. Lust, Fortsch. Phys. 58, 505-527, arXiv: 0912.3167 (hep-th); G. Dvali, C. Gomez, arXiv: 1004.3744 (hep-th)

Alessandro Mininno (UHH)

The Minimal WGC

1

Definition of Tower of Particles	Strong Coupling Limits	0000

Strong Coupling Limits

Strong Coupling

 $\gamma \to \infty$

• $\gamma \to \infty$ implies $g^2_{U(1),D} M^{D-4}_{Pl,D} \to \infty$, but the converse does not hold.

Strong coupling with $\gamma \sim O(1)$ can be achieved by taking an infinite distance limit.

We need finite distance limits to have a tower.

Conditions

$$\left. \left(g_{U_{(1),D}}^2 M_{\mathsf{P}_{\mathsf{I},D}}^{D-4} \right) \right|_{\mathcal{P}_{\varepsilon}} > \varepsilon^{-1} \qquad \text{and} \qquad d(p_1,p_{\varepsilon}) < \delta_1 M_{\mathsf{P}_{\mathsf{I},D}}^{\frac{D-2}{2}}$$

Existence of Towers of Particles

Existence of Towers of Particles

There can exist an infinite tower of super-extremal states that become particle-like excitations if either:

Weak Coupling:

$$\left(g_{\mathsf{U}(1),\,\mathsf{D}}^2 M_{\mathsf{Pl},\,\mathsf{D}}^{D-4}
ight) < \varepsilon \qquad ext{and} \qquad rac{g_{\mathsf{U}(1),\,\mathsf{D}}^2 M_{\mathsf{Pl},\,\mathsf{D}}^{D-2}}{M_{\mathsf{Pl},\,\infty}^2} < \varepsilon \ .$$

- Necessary conditions for the existence of a tower of states.
- Particle-like description also in the highest-dimensional description of the theory.

Finite Distance Strong Coupling:

$$\left(g_{U_{(1),D}}^2 M_{P|,D}^{D-4}\right) > \varepsilon^{-1} \quad \text{and} \quad d(p_1, p_{\varepsilon}) < \delta_1 M_{P|,D}^{\frac{D-2}{2}}.$$

- Necessary conditions for the existence of a tower of states.
- Warning: Strongly-coupled gauge theories at finite distance without an infinite tower of particle states.

Definition of Tower of Particles

2 Minimal Radius in Quantum Gravity

Conclusions

Arguing for the Minimal Radius

KK Particles

A KK tower of mass $M_{\rm KK} \sim \frac{1}{2\pi r_{S^1}}$ can be detected from the EFT if

$$M_{
m KK}\sim rac{1}{2\pi r_{S^1}}\leq M_{
m BH,\ min.}$$

Species Scale and Minimal Black Hole

$$\frac{M_{\rm BH,\,min.}}{M_{\rm Pl,\,D}} = \left(\frac{M_{\rm Pl,\,D}}{\Lambda_{\rm QG}}\right)^{D-3} \text{ with } r_{\rm BH,\,min.}^{-1} \sim \Lambda_{\rm QG}.^3$$

Minimal Radius

Suppose $\Lambda_{QG} = M_{PI, D-1}$, then we have

$$2\pi r_{S^1}^{\min} = M_{\text{Pl}, D-1}^{-1}$$
 : minimal radius.

It exists every time the small radius limit is not associated with a weakly coupled tower.

³G. Dvali, Fortsch. Phys. 58, 528–536, arXiv: 0706.2050 (hep-th); N. B. Agmon, A. Bedroya, M. J. Kang, C. Vafa, arXiv: 2212.06187 (hep-th) See Max's talk at Strings and Geometry 2024.

F-theory/M-theory Duality

F-theory/M-theory Duality

F-theory on $X_3 \times S^1$ is dual to M-theory on X_3 with $r_{S^1}M_{11d} = \frac{1}{1} \equiv \frac{1}{2}$

$$T_{S^1} M_{11d} - \frac{1}{2\pi \text{vol}(T^2) M_{11d}^2} = \frac{1}{2\pi r}$$

Small Radius

1 Naively
$$r_{S^1}M_{_{11d}} \to 0 \Longrightarrow \tau \to \infty$$
.

- **2** Vector multiplet limit: $\operatorname{vol}(X_3)M_{11d}^6 \equiv \mathcal{V}_{X_3} \simeq \tau \mathcal{V}_{B_2} \simeq \operatorname{const.}$
- Looking for lower bound on r_{min}.

The Maximal Fiber

The maximal fiber is given by

$$\tau_{\max} = \max_{\tau \ge 0} \left(\tau \left| \mathcal{V}_{X_3} = \alpha \tau^3 + \beta \tau^2 + \tau \mathcal{V}_{B_2} \stackrel{!}{=} 1 \right) \right.$$

Definition of Tower of Particles

2 Minimal Radius in Quantum Gravity

00	nali	101	~ ~	
00	ncii	JSI	υı	IS

Conclusions

The Minimal Weak Gravity Conjecture

Existence of Towers of Particles

There can exist an infinite tower of super-extremal states that become particle-like excitations if either:

Weak Coupling:

$$\left(g_{\mathsf{U}_{(1),\mathsf{D}}}^2 M_{\mathsf{Pl},\mathsf{D}}^{D-4}
ight) < \varepsilon \qquad ext{and} \qquad rac{g_{\mathsf{U}_{(1),\mathsf{D}}}^2 M_{\mathsf{Pl},\mathsf{D}}^{D-2}}{M_{\mathsf{Pl},\mathsf{D}}^2} < \varepsilon \,.$$

Finite Distance Strong Coupling:

$$\left(g_{U_{(1),D}}^2 M_{_{\mathsf{Pl},D}}^{D-4}\right) > \varepsilon^{-1}$$
 and $d(p_1,p_\varepsilon) < \delta_1 M_{_{\mathsf{Pl},D}}^{\frac{D-2}{2}}$.

The Minimal Weak Gravity Conjecture

Towers of (super-)extremal particle states exist **if and only if** they are required by the WGC under dimensional reduction:

- Ø Kaluza–Klein reductions with KK gauge bosons.
- Strongly coupled limits with exactly extremal states. (?)

Thank you!

Genuine Gauge Theories

Genuine Gauge Theories

A genuine gauge theory is a gauge theory that, within the validity of the EFT, cannot be resolved to be a defect or higher-form symmetry.

Length Scale for a Gauge Theory

It is possible to associate a length scale $\ell_{perp.}$ to defect or higher-form symmetries:

• Defect theories:

$$\ell_{ ext{perp.}} = ext{diam}(\mathcal{S}_{ ext{perp.}})$$
 ,

where $S_{perp.}$ is the (D - d)-dimensional space for a *d*-dimensional defect in a *D*-dimensional EFT.

• Higher-form symmetries:

 $\ell_{\text{perp.}} = \text{diam}(C)$,

where *C* is the compact cycle over which an higher-form symmetry is reduced.

WGC for Genuine Gauge Theories

Constraints from Quantum Gravity

An EFT coupled to gravity has a quantum gravity cutoff $\Lambda_{\text{\tiny QG}}$ that also set a minimal length scale

$$\ell_{\rm min.} = rac{1}{\Lambda_{\rm QG}} \, .$$

WGC for Genuine Gauge Theories

A genuine gauge theory for the EFT coupled to gravity has

- $\ell_{\text{perp.}} < \ell_{\text{min.}}$: EFT does **not** know the origin of the gauge theory.
- **2** $\Lambda_{\text{WGC}} \lesssim \Lambda_{\text{QG}}$: the gauge theory is **coupled** to gravity.