

ETW brane networks for Calabi-Yau moduli **Roberta Angius** IFT - Madrid

String Phenomenology 2024 Padova

Based on: 2404.14486

and also 2312.16286 with A. Uranga and A. Makridou 2203.11240 with A. Uranga, J. Huertas, M. Delgado and J.Calderon-Infante

Motivations and techniques:

the complex structure moduli space of Calabi-Yau compactifications

(a) Construction of the spacetime effective actions for the relevant moduli near the **Techniques:** network of infinite distance singularities using the information encoded in the asymptotic Hodge structure of the moduli space;

> (b) Computation of the Dynamical Cobordism solutions for these actions realizing networks of intersecting ETW branes in spacetime.

To provide spacetime realizations for the network of infinite distance singularities in

Calabi-Yau compactifications provide a rich landscape of phenomenological interesting vacua;

Infinite distance limits are the natural arena for testing many of the Swampland conjectures in a physically under control configuration;

There exists a very powerful mathematical classification of these limits in terms of asymptotic Hodge theory

Dynamical Cobordism to Nothing

[Buratti,(Calderon-Infante),Delgado,Uranga '21], [R.A.,(Calderon-Infante),(Delgado),(Huertas), Uranga '22, '23] [Blumenhagen, (Cribiori), Kneissl, (Makridou), (Wang), '22,'23]

N H H O

ETW brane networks for Calabi-Yau moduli **Roberta Angius**

End of The World branes

Microscopic defect	<i>n</i> + 1	δ	а
Bubble of Nothing	4	$\sqrt{6}$	0
D2 brane	4	$\sqrt{14}/7$	20/21
$D2/D6 \text{ on } T^4 \times S^2$	4	$\sqrt{2}$	2/3

ETW brane networks for Calabi-Yau moduli **Roberta Angius**

Are different kind of ETW branes already distinguishable at the level of effective theory?

•
$$\varphi(y) \simeq -\frac{2}{\delta} \log y$$

• $ds_{n+1}^2 = e^{-2\sigma(y)} ds_n^2 + dy^2$
with $\sigma(y) \simeq \pm \frac{4}{(n-1)\delta^2} \log y$

controlled by the following class of potentials:

$$V(\phi) \simeq -cae^{\delta\phi}$$

At fixed spacetime dimension, the only parameter specifying the kind of ETW-brane is the critical exponent:

$$\delta = 2\sqrt{\frac{n}{n-1}(1-a)}$$

Intersecting ETW branes

[R.A., Makridou, Uranga, '23]

parameterized by multiple scalars that explode simultaneously

$$S = \int d^{n+2}x \sqrt{-g} \left\{ \frac{1}{2}R - \frac{1}{2} \left(\partial\varphi_{1}\right)^{2} - \frac{1}{2} \left(\partial\varphi_{1}\right)^{2} - \frac{\alpha}{2} \partial\varphi_{1} \partial\varphi_{2} - V(\varphi_{1}, \varphi_{2}) \right\}$$
Solutions describing two intersecting cod-1 ETW brane
$$\varphi_{1}(y_{1}) = -\frac{2}{\delta_{1}} \log y_{1}$$

$$\varphi_{2}(y_{2}) = -\frac{2}{\delta_{2}} \log y_{2}$$

$$ds_{n+2}^{2} = e^{-2\sigma_{1}(y_{1}) - 2\sigma_{2}(y_{2})} ds_{n}^{2} + e^{-2\sigma_{2}(y_{2})} dy_{1}^{2} + e^{-2\sigma_{1}(y_{1})} dy_{2}^{2}$$
with $\sigma_{1}(y_{1}) = \pm \frac{4}{n\delta_{1}^{2}} \log y_{1}$ and $\sigma_{2}(y_{2}) = \pm \frac{4}{n\delta_{2}^{2}} \log y_{2}$
controlled by the following class of potentials: $V(\phi) \simeq -c_{1}v_{1}e^{\delta_{1}\varphi_{1}}e^{\delta_{2}\varphi_{2}} - c_{2}v_{2}e^{a_{1}\delta_{1}\varphi_{1}}e^{\delta_{2}\varphi_{2}}$

Roberta Angius ETW brane networks for Calabi-Yau moduli

Andriana's falk!

<u>S:</u>

4/11

CY moduli space

[Math: Cattani, Kaplan, Schmid '86; Deligne '91; Kerr, Pearlstein, Robles '19 ...] [Phys: (Bastian), Grimm, (Li), (Palti), (Ruehle), (Valenzuela), (van de Heisteeg),... '18, '19, '20, '21 ...]

Let \mathcal{M}_{cs} be the complex structure moduli space of CY_4 :

- It has complex dimension $h^{3,1} = 2$;
- It is not smooth nor compact ;
- It is a quasi-projective manifold.

CY moduli space

 $t^k = a^k + is^k \mapsto const + i\infty$

Classification of all the possible
types of singularities in
$$\mathcal{M}_{cs}$$
 ~
Type I: $I_{0,0}, I_{0,1}, I_{1,1}$
 $I_{0,2}, I_{1,2}, I_{2,2}$
Type II: $II_{0,0}, II_{0,1}, II_{1,1}$
Type III: $III_{0,0}, III_{0,1}, III_{1,1}$
Type IV: $IV_{0,1}$
Type IV: $IV_{0,1}$

Singularities classification (for $h^{3,1} = 2$)

[Grimm, Li, Valenzuela, '19]

Classification of all the nearby

Classification of all the possible Hodge-Deligne splittings associated to all the possible singular divisors Δ_k

Deligne diamond

Let us consider M-theory compactified on a CY_4 . The classification of the singularities provides the information to write the action for s_k near Δ_k :

$$S = \int d^3x \sqrt{-g} \left\{ \frac{1}{2}R - \frac{d_k}{4(s_k)^2} \left(\partial s^k\right)^2 + \dots \right\}$$

Let us consider M-theory compactified on a CY_4 . The classification of the singularities provides the information to write the action for s_k near Δ_k :

$$S = \int d^3x \sqrt{-g} \left\{ \frac{1}{2}R - \frac{d_k}{4(s_k)^2} \left(\partial s^k\right)^2 + \dots \right\}$$

Putting a G_4 -flux in our CY_4 compactification we generate a 3d potetial:

$$V = \frac{1}{\mathcal{V}_4^3} \left(\int_{Y_4} G_4 \wedge \star \bar{G}_4 \right)$$

Let us consider M-theory compactified on a CY_4 . The classification of the singularities provides the information to write the action for s_k near Δ_k :

$$S = \int d^3x \sqrt{-g} \left\{ \frac{1}{2}R - \frac{d_k}{4(s_k)^2} \left(\partial s^k\right)^2 - V(s^k) \right\}$$

Putting a G_4 -flux in our CY_4 compactification we generate a 3d potetial:

$$V = \frac{1}{\mathcal{V}_4^3} \left(\int_{Y_4} G_4 \wedge \star \bar{G}_4 \right)$$

 Δ_k

$$\int_{Y_4} G_4 \wedge G_4 \to ||\rho||^2 (s_k)^{l_k - 4}$$

Using the Growth Theorem for the Hodge norm we get the leading potential near the boundary

Let us consider M-theory compactified on a CY_4 . The classification of the singularities provides the information to write the action for s_k near Δ_k :

$$S = \int d^3x \sqrt{-g} \left\{ \frac{1}{2}R - \frac{1}{2} \left(\partial \phi_k \right)^2 - ||\rho||^2 e^{\sqrt{\frac{2}{d_k}}(l_k - 4)\phi_k} \right\}$$

Putting a G_4 -flux in our CY_4 compactification we generate a 3d potetial:

$$V = \frac{1}{\mathcal{V}_4^3} \left(\int_{Y_4} G_4 \wedge \star \bar{G}_4 \right)$$

Redefining the field: $\phi_k = \sqrt{\frac{\alpha_k}{2} \log s_k}$

$$\int_{Y_4} G_4 \wedge G_4 \to ||\rho||^2 (s_k)^{l_k - 4}$$

Using the Growth Theorem for the Hodge norm we get the leading potential near the boundary

Applying Dynamical Cobordism thecniques in the resulting three-dimensional effective action:

• We can associate to each singular divisor $\Delta_k \in \Delta$ a specific ETW brane in spacetime

ETW brane networks for Calabi-Yau moduli **Roberta Angius**

Type	d_k	l_k	δ	Type	d_k	l_k	δ
$II_{0,0}$	1	5	$+\sqrt{2}$	$II_{0,1}$	1	5	$+\sqrt{2}$
$II_{1,1}$	1	5	$+\sqrt{2}$	$II_{1,1}$	1	6	+2
$III_{0,0}$	2	6	+2	$III_{1,1}$	2	6	+2
$III_{0,1}$	2	5	+1	III _{0,1}	2	6	+2
$IV_{0,1}$	3	5	$+\sqrt{6}/3$	$IV_{0,1}$	3	7	$+\sqrt{6}$
$V_{1,1}$	4	6	$+\sqrt{2}$	$V_{1,1}$	4	8	+2
$V_{1,2}$	4	5	$+\sqrt{2}/2$	$V_{1,2}$	4	6	$+\sqrt{2}$
$V_{1,2}$	4	8	$+2\sqrt{2}$	$V_{2,2}$	4	6	$+\sqrt{2}$
$V_{2,2}$	4	8	$+2\sqrt{2}$				

Effective action at the enhancements

$$S = \int d^3x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2} \left(\partial \psi_1 \right)^2 \right]$$

• Diagonal kinetic metric

Single potential term

ETW brane networks for Calabi-Yau moduli **Roberta Angius**

Admissible enhancements:

The effective action for the relevant scalars $s_1 \mapsto \psi_1$ and

$$\frac{1}{2} \left(\partial \psi_2 \right)^2 - \left| \left| \rho \right| \right|^2 e^{\sqrt{\frac{2}{d_1}} (l_1 - 4) \psi_1} e^{\sqrt{\frac{2}{d_e - d_1}} (l_e - l_1) \psi_2} \right]$$

The class of **Dynamical Cobordism** solutions we computed in [2312.16286] is not valid for this action.

Beyond the conformal flatness

$$\frac{1}{a_1 n (2 - a_1 - a_1 n)} \log y_1 - a_2 (1 - a_1 n) \sqrt{\frac{n}{a_1 (2 - a_1 - a_1 n)}} \log y_1} \log y_2$$

$$\frac{1}{a_2 n \left(1 + \frac{a_2 (a_1 n - 1)^2}{a_1 (a_1 + a_1 n - 2)}\right)} \log y_2$$

$$\frac{1}{a_1 (a_1 + a_1 n - 2)} \log y_1 - y_2^{-2a_2 n} dy_2^2 \log y_2$$

$$\frac{1}{a_1 (a_1 - a_1 n)} \log y_1 - y_2^{-2a_2 n} dy_2^2 \log y_2$$

$$\frac{1}{a_1 (a_1 - a_1 n)} \log y_1 - y_2^{-2a_2 n} dy_2^2 \log y_2$$

$$\frac{1}{a_1 (a_1 - a_1 n)} \log y_1 - y_2^{-2a_2 n} dy_2^2 \log y_2$$

$$\frac{1}{a_1 (a_1 - a_1 n)} \log y_1 - y_2^{-2a_2 n} dy_2^2 \log y_2$$

Beyond the conformal flatness

We can provide a spacetime realization for each enhancement as an intersection of two ETW branes: where the first brane represents the first singular divisor and the second brane represents the enhanced singularity

ETW brane networks for Calabi-Yau moduli **Roberta Angius**

$$\frac{1}{a_1 n(2-a_1-a_1n)} \log y_1 - a_2(1-a_1n) \sqrt{\frac{n}{a_1(2-a_1-a_1n)}} \log y_1 + \frac{1}{a_1(a_1+a_1n-2)} \log y_2$$

$$\frac{1}{a_1(a_1+a_1n-2)} \log y_2 + y_1^{-2(1-a_1n)} dy_1^2 - y_2^{-2a_2n} dy_2^2 \log y_2$$

$$\frac{1}{ass:} \qquad V(\phi) \simeq c \cdot v \cdot e^{A_1 \psi_1} e^{A_2 \psi_2}$$

Conclusions

- the configurations realized through their intersection
- brane with a possible additional extra-source localized in the codimension-2 intersectin locus.
- a specific ETW brane in spacetime classified in terms of the critical exponent.
- \bullet I provided a spacetime realization for some of the admissible enhancements in Δ in terms of intersecting ETW branes.

The intersecting configurations of ETW branes are the building blocks able to probe the network of infinite distance singularities in the Calabi-Yau moduli space.

I reviewed Dynamical Cobordism solutions describing codimension-1 boundaries in spacetime and

• I constructed a new class of solution ... the propriety of conformal flatness in the spacetime metric. The ne solution still admits an interpretation in terms of intersection of two codimension-1 ETW

• I associated to each singular divisor $\Delta_k \in \Delta$ in \mathcal{M}_{cs} classified in terms of asymptotic Hodge theory,

Thank you!