A Distance Conjecture for Branes ME, B. Heidenreich, T. Rudelius 2407.XXXXX

> Muldrow Etheredge UMass Amherst

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Sharpened Distance Conjecture

The theory an asymptotic distance ϕ in the moduli space will have¹ a tower of particles with exponentially light masses:

$$m\sim e^{-lpha \phi}, \qquad lpha \geq 1/\sqrt{d-2}$$

¹[hep-th/0605264: H. Ooguri, C. Vafa], [2206.04063: ME, B. Heidenreich, S. Kaya, Y. Qiu, T. Rudelius]

Sharpened Distance Conjecture

• Sharpened Distance Conjecture is **not** automatically preserved under dimensional reduction.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Sharpened Distance Conjecture

- Sharpened Distance Conjecture is **not** automatically preserved under dimensional reduction.
- Brane Distance Conjecture is a necessary condition.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Pick $p_{max} \in \{1, ..., d-2\}$. Consider the set of particle towers or fundamental non-particle branes with at most p_{max} spacetime dimensions. In any inf. dist. limit, one will satisfy

$$T \sim \exp(-\alpha \phi), \qquad \alpha \geq 1/\sqrt{d - p_{\max} - 1}.$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Pick $p_{max} \in \{1, ..., d-2\}$. Consider the set of particle towers or fundamental non-particle branes with at most p_{max} spacetime dimensions. In any inf. dist. limit, one will satisfy

$$T \sim \exp(-\alpha \phi), \qquad \alpha \geq 1/\sqrt{d - p_{\max} - 1}.$$

• $p_{\text{max}} = 1$ is the Sharpened DC.

Pick $p_{max} \in \{1, ..., d-2\}$. Consider the set of particle towers or fundamental non-particle branes with at most p_{max} spacetime dimensions. In any inf. dist. limit, one will satisfy

$$T \sim \exp(-\alpha \phi), \qquad \alpha \geq 1/\sqrt{d - p_{\max} - 1}.$$

• $p_{\text{max}} = 1$ is the Sharpened DC.

• Lower bound on α gets stronger as p_{max} increases.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

• Toroidally compactify from *D* to *d* dimensions. Consider an inf. dist. limit in only higher dim. moduli space.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

- Toroidally compactify from *D* to *d* dimensions. Consider an inf. dist. limit in only higher dim. moduli space.
- Sharpened DC satisfied² by *D*-dim. theory's particle towers and fundamental branes that fully wrap the torus.

²Follows from [1910.01135: S. Lee, W. Lerche, T. Weigand], [2022.00024: D. Klaewer, S. Lee, T. Weigand, M. Wiesner]→ (=) (=) (=) ()

- Toroidally compactify from *D* to *d* dimensions. Consider an inf. dist. limit in only higher dim. moduli space.
- Sharpened DC satisfied² by *D*-dim. theory's particle towers and fundamental branes that fully wrap the torus.

²Follows from [1910.01135: S. Lee, W. Lerche, T. Weigand], [2022.00024: D. Klaewer, S. Lee, T. Weigand, M. Wiesner]→ (=) (=) (=) ()

- Toroidally compactify from *D* to *d* dimensions. Consider an inf. dist. limit in only higher dim. moduli space.
- Sharpened DC satisfied² by *D*-dim. theory's particle towers and fundamental branes that fully wrap the torus.
- This implies the Brane DC, with $p_{max} = D d + 1$.

Examples

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Examples

The α in $T \sim e^{-\alpha \phi}$ can be promoted to a vector:

$$\vec{\alpha} = -\nabla \log T.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Examples

The α in $T \sim e^{-\alpha \phi}$ can be promoted to a vector:

$$\vec{\alpha} = -\nabla \log T.$$

For flat slices of moduli space where α -vectors are constant, Brane DC is equivalent³ to the convex hull of α -vectors containing ball of radius $1/\sqrt{d - p_{max} - 1}$.

³[2012.00034: J. Calderón-Infante, A. Uranga, I. Valenzuela] = → (=) → ()

$$\vec{lpha} = -\nabla \log T$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

 $\vec{\alpha} = -\nabla \log T$

• Blue circ. radius: $1/\sqrt{7}$.

 $\vec{\alpha} = -\nabla \log T$

- Blue circ. radius: $1/\sqrt{7}$.
- Orange circ. radius: $1/\sqrt{6}$.

 $\vec{\alpha} = -\nabla \log T$

- Blue circ. radius: $1/\sqrt{7}$.
- Orange circ. radius: $1/\sqrt{5}$.

 $\vec{\alpha} = -\nabla \log T$

- Blue circ. radius: $1/\sqrt{7}$.
- Orange circ. radius: $1/\sqrt{4}$.

 $\vec{\alpha} = -\nabla \log T$

- Blue circ. radius: $1/\sqrt{7}$.
- Orange circ. radius: $1/\sqrt{3}$.

 $\vec{\alpha} = -\nabla \log T$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Blue circ. radius: $1/\sqrt{7}$.
- Red circ. radius: $1/\sqrt{2}$.

 $\vec{\alpha} = -\nabla \log T$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

- 3

- Blue circ. radius: $1/\sqrt{7}$.
- Red circ. radius: $1/\sqrt{2}$.
- Magenta circ. radius: 1.

IIB on tori, dilaton-volume, 8d-3d

Heterotic on circle, dilaton-radion, $p_{max} = 6$

Figure: BPS branes. Red circ. radius $1/\sqrt{2}$.

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Figure: BPS branes. Red circ. radius $1/\sqrt{2}$.

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Figure: BPS branes. Red circ. radius $1/\sqrt{2}$.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Figure: BPS branes. Red circ. radius $1/\sqrt{2}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Brane DC not satisfied by BPS branes alone!

Figure: BPS branes. Red circ. radius $1/\sqrt{2}$.

- Brane DC not satisfied by BPS branes alone!
- Need non-BPS branes.

 Need to consider different duality frames where non-BPS branes are long-lived.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Need to consider different duality frames where non-BPS branes are long-lived.
- Non-BPS branes save $p_{max} = d 3$ Brane DC!

• What about Brane DC for other values of p_{max} ?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ● ● ●

• What about Brane DC for other values of p_{max} ?

Figure: Heterotic in 9d. $p_{max} = d - 3$. BPS branes.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• What about Brane DC for other values of p_{max} ?

Figure: Heterotic in 9d. $p_{max} = d - 3$. BPS branes.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Need novel non-BPS branes.

 For suitable branes of spacetime dimensions *p* and *q* with *p* ≥ *q*, their *α*-vectors satisfy taxonomy rules⁴

$$\vec{\alpha}_p^2 = 2 - \frac{p(d-p-2)}{d-2}, \qquad \vec{\alpha}_p \cdot \vec{\alpha}_q = 1 - \frac{q(d-p-2)}{d-2}.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

• Sharpened DC, ESC, and refinements require the Brane Distance Conjecture.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

• Sharpened DC, ESC, and refinements require the Brane Distance Conjecture.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Brane DC satisfied in multiple examples.

• Sharpened DC, ESC, and refinements require the Brane Distance Conjecture.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Brane DC satisfied in multiple examples.
- Can make predictions about novel branes.

• Sharpened DC, ESC, and refinements require the Brane Distance Conjecture.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Brane DC satisfied in multiple examples.
- Can make predictions about novel branes.

Thank you!