Cobordism and the half-spin group [C.K. 240X.XXXXX]

Christian Kneißl¹

MAX-PLANCK-I

25.06.2024 String Phenomenology 2024 - Centro Culturale Altinate - San Gaetano -Padova

¹Max-Planck-Institute for Physics

Setting the stage - Cobordism

- Mathematical model for topology-changing processes between n-dimensional manifolds M and N
- Cobordism groups denoted as $\Omega_n^{\xi}(X)$

 \Rightarrow here X a classifying space *BG* encoding a background gauge field

The Cobordism Conjecture [McNamara, Vafa '19]

• A non-vanishing cobordism group Ω_n^{ξ} can be understood as a higher-form global symmetry

 \Rightarrow Absence of Global Symmetries in Quantum Gravity

e.g. [Banks, Seiberg '10] implies $\Omega_n^{QG} = 0$

 \Rightarrow Mechanism: Gauging or breaking

Figure 1: Vanishing cobordism group - nullbordant manifold

Spin(32)/ \mathbb{Z}_2 or Spin(32)/ \mathbb{Z}_2

- Aim: Study topological consistency conditions for type I $(Spin(32)/\mathbb{Z}_2$ heterotic string) arising from the Cobordism Conjecture
- Fixing tangential structure to be spin as required by type I string theory
- We have a background gauge field present due to background D9-branes \Rightarrow SO(32)?
- Nonperturbatively has to be the same as the S-dual Spin(32)/ \mathbb{Z}_2 heterotic string [Berkooz, Leigh, Polchinski, Schwarz, Seiberg, Witten '96]
- Spin(32) has center Z₂ ⊕ Z₂ ⇒ two unique quotients: SO(32) and SemiSpin(32)

 \Rightarrow Have to calculate $\Omega_n^{Spin}(BSs(32))$

- For cobordism calculations involving classifying spaces usually Adams spectral sequence the preferred tool
- How do Spectral sequences work?
- Approximation tool, each step is called page

 \Rightarrow Fill second page with a known commodity, e.g. for Adams spectral sequence we need to know $H^*(BG, \mathbb{Z}_2)$

- \Rightarrow Calculate (finitely many) subsequent pages
- \Rightarrow Retrieve cobordism groups from final page

Calculation of $\Omega^{Spin}(BSs(32))$ II

• However $H^*(BSs(32), \mathbb{Z}_2)$ is not known...

 \Rightarrow More spectral sequences! techniques similar to [Kono, Mimura, Shimada '75, '76]

 \Rightarrow The following Eilenberg-Moore-spectral sequence does the job

$$E_2 = \operatorname{Cotor}^{H^*(Ss(32),\mathbb{Z}_2)}(\mathbb{Z}_2,\mathbb{Z}_2) \Longrightarrow H^*(BSs(32),\mathbb{Z}_2).$$

⇒ Upshot: Calculate $H^*(BSs(32), \mathbb{Z}_2)$ from $H^*(Ss(32), \mathbb{Z}_2)$, feed it into Adams spectral sequence ⇒ $\Omega_n^{Spin}(BSs(32))$

The ko-homology building blocks

• Compute $ko_n(BSs(32))$ use the ABP theorem [Anderson, Brown, Peterson '67]:

$$\Omega_n^{Spin}(X)_{\widehat{2}} = ko_n(X)_{\widehat{2}} \oplus ko_{n-8}(X)_{\widehat{2}} \oplus ko_{n-10}\langle 2 \rangle (X)_{\widehat{2}} \oplus \dots$$
(1)

- ko_n(BSs(32)) ≅ ko_n(pt) ⊕ ko_n(BSs(32)) informs us about type I open (fundamental) string sector
- What about S-dual heterotic strings?

⇒ Indeed same background gauge group (more specifically Langlands dual group with $Ss(32) = {}^{L}Ss(32)$) ⇒ $ko_n(B^{L}Ss(32)) \cong ko_n(pt) \oplus \widetilde{ko}_n(B^{L}Ss(32))$ informs us about the heterotic open D-string sector! [Hull '97, '98] ⇒ Jacob's talk yesterday

n	0	1	2	3	2	1	5	6	7	
$\Omega_n^{Spin}(BSs(32))$	\mathbb{Z}	\mathbb{Z}_2	$2\mathbb{Z}_2$	0	\mathbb{Z}_2 (∋2ℤ	0	$2\mathbb{Z}_2$	0	
n	8		9	10		11		12		
$\Omega_n^{Spin}(BSs(32))$	$5\mathbb{Z}\oplus\mathbb{Z}_8$		$5\mathbb{Z}_2$	1	$0\mathbb{Z}_2$	$3\mathbb{Z}_2$	82	$8\mathbb{Z}\oplus9\mathbb{Z}_2\oplus\mathbb{Z}$		8

- Pick out one example $\Omega_4^{Spin}(BSs(32)) = \mathbb{Z}_2 \oplus 2\mathbb{Z}$
- Orientifold on orbifold limit of K3 [Gimon, Polchinski '96]
 ⇒ 16 "hidden" instantons/D5-branes at fixed points and 8 dynamical D5-branes

 \Rightarrow Fixed points can be smoothly blown up and retain smooth K3 spectrum \Rightarrow only consistent if instantons are SemiSpin(32)-instantons [Berkooz, Leigh, Polchinski, Schwarz, Seiberg, Witten '96]

Some of the physics behind $\Omega^{Spin}(BSs(32))$ II

 There are three equivalence classes of K3-compactifications with SemiSpin(32)-bundle, enumerated by the homological invariants:

$$\widetilde{w}_2 = 0$$
, (2)

$$\widetilde{w}_2 \neq 0 \text{ and } \widetilde{w}_2^2 = 0 \mod 4$$
, (3)

$$\widetilde{w}_2 \neq 0 \text{ and } \widetilde{w}_2^2 = 2 \mod 4.$$
 (4)

• Convenient general description as F-theory on elliptically fibered Calabi-Yau threefold with base \mathbb{F}_n where $\widetilde{w}_2^2 = 2(n-4) \mod 4$ and $4 \ge n \ge -2$ [Aspinwall '96]

Some of the physics behind $\Omega^{Spin}(BSs(32))$ III

10

• Our spin cobordism group is precisely detected by $\frac{1}{2}\mathcal{P}(x_2)$ mod 2 or equivalently $\widetilde{w}_2^2 = 0, 2 \mod 4$

 \Rightarrow So how is it trivialized?

• It turns out that the SemiSpin(32)-instantons always contribute a charge of $2 \tilde{w}_2^2 = 0 \mod 4$ [Aspinwall '96] thereby we are always in the trivial class $[0] \in \Omega_A^{Spin}(BSs(32))$

Outlook

• Based on the constraint for $\frac{1}{2}\mathcal{P}(\widetilde{w}_2) \in \mathbb{Z}_2 \subset \Omega_4^{Spin}(BSs(32))$

⇒ higher dimensional cobordism groups like $\widetilde{w}_2^4 \in \mathbb{Z}_8 \subset \Omega_8^{Spin}(BSs(32))$ gauged as well?

 \Rightarrow Invariants related to frozen phase of F-theory/type I without vector structure compactifications [Witten '98]

- Map from Spin cobordism to KO-theory ⇒ tadpole cancellation [Blumenhagen, Cribiori '21]
- Now that we have Ω_n^{Spin}(BSs(32)) can uplift to twisted string structure (include Bianchi identity) for non-SUSY (Ss(16) × Ss(16)) ⋊ Z₂- and Ss(32)-heterotic string ⇒ Are there new subtleties? [Basile, Debray, Delgado, Montero '23]