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Summary of the talk

• Many interesting backgrounds in string theory involve Ramond-Ramond fluxes
Maldacena 97, Giddings, Kachru, Polchinski 01, Kachru, Kallosh, Linde, Trivedi 03, DeWolfe, Giryavets, Kachru, Taylor 05

• Studying Ramond-Ramond backgrounds in the RNS formalism has been very difficult. Friedan,

Martinec, Shenker 86, Berenstein, Leigh 99, Berkovits, Vafa, Witten 99, Berkovits 99, 00

• Recently constructed super string field theory (SFT) provides a systematic and practical framework
to study generic backgrounds. Zwiebach 92, de Lacroix, Erbin, Kashyap, Sen, Verma 17, Cho, Collier, Yin 18, Sen,

Zwiebach 24

• We found background solutions in SFT that corresponds to GKP type flux compactifications

• With this “worldsheet” description, we can now compute stringy amplitudes in flux backgrounds

• e.g., direct computations of α′ and gs corrections to the effective action in flux backgrounds
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Plan of the talk

• Why string field theory?

• What is string field theory?

• Review of GKP

• SFT for GKP with small flux superpotential

• Conclusions
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Chapter 0: Why string field theory?
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String perturbation theory in RR backgrounds

• We don’t have access to CFT for RR backgrounds, the best we can do is to start with the CFT for
purely NSNS backgrounds, and deform the CFT with RR flux

• Deforming the WS action by RR flux inducs a non-local deformation

g2s

∫
Σ

d2z1V
(−1/2,−1/2)
RR (z1)

∫
Σ

d2z2V
(1/2,1/2)
RR (z2) .

Berenstein, Leigh 99

• Therefore, it is hard to make sense of the deformed CFT

• But, this does not yet imply that we cannot compute amplitudes in background field method
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String perturbation theory in RR backgrounds

• Because scattering amplitudes involving RR fields are well defined, one can still attempt to compute
scattering amplitudes in RR backgrounds with the background field method

• Let’s try to formulate four-graviton amplitude in RR backgrounds at string tree-level
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Recap

• Deforming the WS action by RR fluxes in the RNS formalism is not well defined.

• On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.

• The conventional string perturbation theory based on RNS does not work for RR backgrounds.

• If we can make sense of off-shell amplitudes in string theory, we can understand RR backgrounds.

• We should use string field theory!
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Chapter 1: What is string field theory?
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What is string field theory?

• String field theory (SFT) is an attempt to formulate non-perturbative string theory at off-shell.

de Lacroix, Erbin, Kashyap, Sen, Verma 17, Sen, Zwiebach 24

• As input, string field theory takes in a well defined worldsheet CFT.

• And as output SFT gives well-defined off-shell amplitudes

• It has not yet been shown SFT is the right approach to formulate non-perturbative string theory
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What is string field theory?

• At the practical level, SFT gives the most systematic treatment of string perturbation theory.

• Conventional string perturbation theory fails to provide unambiguous answers in generic situations

e.g.: D-instanton amplitudes, amplitudes involving states that are renormalized, time-dependent
backgrounds, Ramond backgrounds, quantum backgrounds

• On the other hand, SFT gives a systematic prescription to handle the above problems Cho, Collier, Yin

18, Sen 20, 21, Alexandrov, Sen, Stefanski 21, Agmon, Balthazar, Cho, Rodriguez, Yin 22, Eniceicu, Mahajan, Murdia, Sen 22,

Alexandrov, Hilmi Fırat, MK, Sen, Stefanski 22, Alexandrov, Mahajan, Sen 23, Cho, Mazel, Yin 23, Mazel, Sandor, Wang, Yin

24..

• Importantly, to do perturbative calculations with SFT, one does not need much more than Polchinski

“Anyone who’s taken a string theory class with Polchinski can do it”

- Minjae Cho (paraphrased)

10 / 33



What is string field theory?

• At the practical level, SFT gives the most systematic treatment of string perturbation theory.

• Conventional string perturbation theory fails to provide unambiguous answers in generic situations

e.g.: D-instanton amplitudes, amplitudes involving states that are renormalized, time-dependent
backgrounds, Ramond backgrounds, quantum backgrounds

• On the other hand, SFT gives a systematic prescription to handle the above problems Cho, Collier, Yin

18, Sen 20, 21, Alexandrov, Sen, Stefanski 21, Agmon, Balthazar, Cho, Rodriguez, Yin 22, Eniceicu, Mahajan, Murdia, Sen 22,

Alexandrov, Hilmi Fırat, MK, Sen, Stefanski 22, Alexandrov, Mahajan, Sen 23, Cho, Mazel, Yin 23, Mazel, Sandor, Wang, Yin

24..

• Importantly, to do perturbative calculations with SFT, one does not need much more than Polchinski

“Anyone who’s taken a string theory class with Polchinski can do it”

- Minjae Cho (paraphrased)

10 / 33



What is string field theory?

• At the practical level, SFT gives the most systematic treatment of string perturbation theory.

• Conventional string perturbation theory fails to provide unambiguous answers in generic situations

e.g.: D-instanton amplitudes, amplitudes involving states that are renormalized, time-dependent
backgrounds, Ramond backgrounds, quantum backgrounds

• On the other hand, SFT gives a systematic prescription to handle the above problems Cho, Collier, Yin

18, Sen 20, 21, Alexandrov, Sen, Stefanski 21, Agmon, Balthazar, Cho, Rodriguez, Yin 22, Eniceicu, Mahajan, Murdia, Sen 22,

Alexandrov, Hilmi Fırat, MK, Sen, Stefanski 22, Alexandrov, Mahajan, Sen 23, Cho, Mazel, Yin 23, Mazel, Sandor, Wang, Yin

24..

• Importantly, to do perturbative calculations with SFT, one does not need much more than Polchinski

“Anyone who’s taken a string theory class with Polchinski can do it”

- Minjae Cho (paraphrased)

10 / 33



What is string field theory?

• At the practical level, SFT gives the most systematic treatment of string perturbation theory.

• Conventional string perturbation theory fails to provide unambiguous answers in generic situations

e.g.: D-instanton amplitudes, amplitudes involving states that are renormalized, time-dependent
backgrounds, Ramond backgrounds, quantum backgrounds

• On the other hand, SFT gives a systematic prescription to handle the above problems Cho, Collier, Yin

18, Sen 20, 21, Alexandrov, Sen, Stefanski 21, Agmon, Balthazar, Cho, Rodriguez, Yin 22, Eniceicu, Mahajan, Murdia, Sen 22,

Alexandrov, Hilmi Fırat, MK, Sen, Stefanski 22, Alexandrov, Mahajan, Sen 23, Cho, Mazel, Yin 23, Mazel, Sandor, Wang, Yin

24..

• Importantly, to do perturbative calculations with SFT, one does not need much more than Polchinski

“Anyone who’s taken a string theory class with Polchinski can do it”

- Minjae Cho (paraphrased)

10 / 33



What is string field theory?

• As an example, let’s take bosonic string theory that has 26 bosons Xµ and b, c ghosts

• In usual string perturbation theory, on shell states are constructed as

VT = Tcc̄eik·X , k2 = 4/α′ , VG,B,D = ϵµνcc̄∂X
µ∂̄Xνeik·X , k2 = 0 , . . .

• One can construct string field Ψ, by

Ψ = Tcc̄eik·X + ϵµνcc̄∂X
µ∂̄Xνeik·X + . . . ,

where polarizations are now taken as string fields.

• Crucially, in SFT, on-shell condition is not imposed and k can take an arbitrary value.
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What is string field theory?

• With the string field, the goal is to construct an off-shell action

Ψ = Tcc̄eik·X + ϵµνcc̄∂X
µ∂̄Xνeik·X + . . . ,

• The on-shell condition for the string field is

c−0 QB |Ψ⟩ = 0

(
≡ ∂SK

∂|Ψ⟩ = 0

)
.

• Therefore, one can deduce that the kinetic action must take the following form

− 1

2g2s
⟨Ψ|c−0 QB |Ψ⟩ .

• What about interaction vertices?

• The idea is to read off Feynmann vertices from off-shell scattering amplitudes
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Three-point vertex

• The three point vertex is determined by the following off-shell amplitude

• {Ψ3} is a complicated function of polarization/string fields.
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Four-point vertex

• To compute the four-point vertex, we need to do a little more work.

• Let’s first compute four-point amplitude

• We expect that some contributions to the four-point amplitude come from joining three-point vertices

• The goal is to isolate the contribution that comes purely from the four-point vertex
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Four-point vertex

• We can put z at a generic point

• For generic z, we have a four-point vertex contribution
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Four-point vertex

• We can bring z to 0

• When z is close to 0, we have t-channel

16 / 33



Four-point vertex

• To find the four-point vertex contribution, we can excise local coordinate charts around 0, 1, ∞

• and integrate over z away from the blue regions

• Different choices of local coordinates correspond to field redefinitions

17 / 33



What is string field theory?

• Finally, we have constructed string field action

S(Ψ) = − 1

2g2s
⟨Ψ|c−0 QB |Ψ⟩+

∑
N,g

g2−2g+N
s

N !
{ΨN}Σg .

• The action satisfies the BV master equation, and therefore path-integral of the string field is well
defined. Zwiebach 92

• In essence, SFT as we know is a self-consistent set of rules that allows off-shell computations in string
perturbation theory

• The SFT action involves infinitely many terms for infinitely many field. So, we should carefully
choose a problem

18 / 33
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Chapter 2: Review of GKP background.
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What is GKP?

• Giddings, Kachru, Polchinski 01 (GKP) aims to stabilize complex structure z and axio-dilaton τ in
type IIB on O3/O7 orientifold of a CY3

• GKP type flux compactification is a basis for more interesting flux vacua, e.g., de Sitter.Talks by

Andreas x2, Liam, Mariana, Thomas, Fernando, Erik

• The low-energy action contains the following terms

Sbulk ⊃ − 1

4κ2
10

∫
R1,3×X/I

d10X
√
−G

(
|H3|2

g2s
+ |F3|2

)
, SD3/O3 ⊃

∑
i

−µ3Qi

∫
R1,3

d4x
√
−G 1

gs

• One can massage the above equations to obtain

S ⊃ − 1

2κ2
10

∫
R1,3

d4X

[∫
d6X

√
−GG− · Ḡ−

Imτ

]
,

∫
X/I

H ∧ F +ND3 = QD3 , G3 := F3 −
i

gs
H3 , G− := G3 + i ⋆6 G3 .
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|H3|2

g2s
+ |F3|2

)
, SD3/O3 ⊃

∑
i

−µ3Qi

∫
R1,3

d4x
√
−G 1

gs

• One can massage the above equations to obtain

S ⊃ − 1

2κ2
10

∫
R1,3

d4X

[∫
d6X

√
−GG− · Ḡ−

Imτ

]
,

∫
X/I

H ∧ F +ND3 = QD3 , G3 := F3 −
i

gs
H3 , G− := G3 + i ⋆6 G3 .
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What is GKP?

• The action contains

SF = − 1

2κ2
10

∫
R1,3

d4XVF , VF =

[∫
d6X

√
−GG− · Ḡ−

Imτ

]
∫
X/I

H ∧ F +ND3 = QD3 , G := F3 −
i

gs
H3 , G− := G3 + i ⋆6 G3 .

• G− vanishes if G3 is a linear combination of complex (2, 1)⊕ (0, 3) forms.

• Therefore, quantized fluxes H3 and F3 induce potential for z and 1/gs.

• At the minimum of the potential, one finds

− ⋆6
H3

gs
= F3 .
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Chapter 3: SFT for GKP.
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Goal

• Today we will find the background solution ≡ B in string field theory for GKP backgrounds

• and show that vacua with small flux superpotential admit double scaling expansion
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Set up

• As an input, SFT requires a well-defined worldsheet CFT.

• The closest worldsheet CFT to flux compactifications we can find is

CFT : S2 → R1,3 ×X/I , BCFT : D2 → Dp-branes ,RP2 → Op-planes

with no quantized fluxes, and the tadpole cancellation condition is not satisfied

ND3 <
1

4
NO3

For simplicity, we choose X to be T 6

• With this CFT, we can construct SFT action

S(Ψ) = − 1

2g2s
⟨Ψ|c−0 QB |Ψ⟩+

∑
N,g

g2−2g+N
s

N !
{ΨN}Σg .

• We want to turn on quantized fluxes F3, H3 in SFT to find a nearby vacuum
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Puzzle

• To find GKP solution in SFT we need to ensure that we can treat quantized fluxes as a small
perturbation

δΨ = cc̄HijkY
ie−ϕψje−ϕ̄ψ̄k + gscc̄e

−ϕ/2ΣαF
αβe−ϕ̄/2Σβ .

• This is a very confusing situation.

• Hijk and Fαβ are quantized fluxes. So, we cannot treat them as small numbers.

• Naively, this seems to suggest that we cannot treat quantized fluxes as a perturbation.

• Then, string field theory is practically useless in the context of flux compactifications.
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Resolution

• Let’s look at OPEs of the worldsheet fields

Y i(x)Y j(0) ∼ −α
′

2
Gij(z) log |x|2 , ψi(x)ψj(0) ∼ Gij(z)

x

• This means that the following vertex operators depend on complex structure moduli z through Gij

δΨ = cc̄HijkY
ie−ϕψje−ϕ̄ψ̄k + gscc̄e

−ϕ/2ΣαF
αβe−ϕ̄/2Σβ .

• Following Demirtas, MK, McAllister, Moritz 19 (PFV), one can choose H and F such that

O
(
HijkY

ie−ϕψje−ϕ̄ψ̄k
)
= O(z−1/2) , O

(
gse

−ϕ/2ΣαF
αβe−ϕ̄/2Σβ

)
= O(gsz

1/2)

c.f., Cicoli, Licheri, Mahanta, Maharana 22

• By taking the following double scaling expansion

gs → 0 , z−1 → 0 , zgs = fixed

we can treat δΨ as a small perturbation
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Solving EOM perturbatively

• We call the following double scaling expansion the ϵ expansion

gs → 0 , z−1 → 0 , zgs = fixed

as we treat O(gs) = O(z−1) = O(ϵ).

• Then, we can find an ansatz for the perturbative background solution

Ψ =
∑
n

ϵn/2Ψn

• In this talk, we will study eom up to the second order

QB |Ψ1⟩ = 0 ,

QB |Ψ2⟩ =
1

2

[
Ψ2

1

]
S2 + []D2+RP2 ,
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Solving EOM perturbatively: second order

• Let’s now study the second-order eom

QB |Ψ2⟩ =
1

2

[
Ψ2

1

]
S2 + []D2+RP2 ,

• The goal is to show that the right hand side is QB exact, and find the form of Ψ2.

• This equation looks very difficult to solve, as source terms are coupled to infinitely many fields

• One can use a hack devised by Sen

• Let’s define a projection operator P that projects states to L+
0 := L0 + L̄0 nilpotent (massless) states

• Then we can find two independent equations

QBP|Ψ2⟩ =
1

2
P
[
Ψ2

1

]
S2 + P[]D2+RP2

QB(1− P)|Ψ2⟩ =
1

2
(1− P)

[
Ψ2

1

]
S2 + (1− P)[]D2+RP2
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Solving EOM perturbatively: second order

• Let’s study the massive part of the second-order eom

QB(1− P)|Ψ2⟩ =
1

2
(1− P)

[
Ψ2

1

]
S2 + (1− P)[]D2+RP2

• For (1− P) projected states, QB is an invertible operator via {QB , b
+
0 } = L+

0

• As a result, eom for infinitely massive states is trivially solved

(1− P)|Ψ2⟩ =
b+0
L+

0

[
1

2
(1− P)

[
Ψ2

1

]
S2 + (1− P)[]D2+RP2

]
• Note that b+0 /L

+
0 corresponds to the Green’s function in target space.
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Solving EOM perturbatively: second order

• Let’s study the L+
0 nilpotent part of the second-order eom

QBP|Ψ2⟩ =
1

2
P
[
Ψ2

1

]
S2 + P[]D2+RP2

• Because QB is not an invertible operator for L+
0 nilpotent states, one needs to do an actual work here.

• After CFT gymnastics, at the F-term minimum, one arrives at

4α′

g2c
P(Ψ2)NSNS =− π

18κ2
10g

2
sϵ
cc̄

(
BabB

ab(η∂̄ξ̄e−2ϕ̄ − ∂ξη̄e−2ϕ)− 2BacB
cbe−ϕψae−ϕ̄ψ̄b

− 2i

√
α′

2
BabH

abc(∂c+ ∂̄c̄)
(
e−ϕψce

−2ϕ̄∂̄ξ̄ + e−ϕ̄ψ̄ce
−2ϕ∂ξ

))
.

• Existence of the solution to low-energy SUGRA is not a sufficient condition for the existence of the
SFT background.
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Conclusions
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Take home messages

• String field theory provides a systematic framework to study generic backgrounds.

• Provided that sugra solutions are well controlled, finding SFT counterpart isn’t very difficult.

• Using the background solution in SFT, one can now compute string amplitudes in RR backgrounds

• e.g., α′ and gs corrections in the flux backgrounds, or more econonomic choice is to extend SFT
solutions to higher orders. (c.f., talk by Liam McAllister and Andreas Schachner)

• The rules of the computations are not completely known. Opportunities for investigations.
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Future directions

• We are computing killing spinor equations to extend the solutions to higher orders Minjae Cho, MK

24xx.xxxxx

• One-loop graviton amplitudes in orientifold compactifications W. I. P.

• One can also study flux compactifications in type IIA, (non-supersymmetric) heterotic string theories.

• Probably there are many more exciting directions! If you are interested, let’s chat!
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