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to study generic backgrounds. Zwiebach 92, de Lacroix, Erbin, Kashyap, Sen, Verma 17, Cho, Collier, Yin 18, Sen,
Zwiebach 24

® We found background solutions in SF'T that corresponds to GKP type flux compactifications
® With this “worldsheet” description, we can now compute stringy amplitudes in flux backgrounds

® e.g., direct computations of o’ and gs corrections to the effective action in flux backgrounds
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String perturbation theory in RR backgrounds

® We don’t have access to CFT for RR backgrounds, the best we can do is to start with the CFT for
purely NSNS backgrounds, and deform the CFT with RR flux
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String perturbation theory in RR backgrounds

® We don’t have access to CFT for RR backgrounds, the best we can do is to start with the CFT for
purely NSNS backgrounds, and deform the CFT with RR flux

® Deforming the WS action by RR flux inducs a non-local deformation

g?/ d2z1V§}1/2’71/2)(z1)/ dZZQVé%Q‘l/m(zz).
o\ )

Berenstein, Leigh 99
® Therefore, it is hard to make sense of the deformed CFT

® But, this does not yet imply that we cannot compute amplitudes in background field method
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String perturbation theory in RR backgrounds

® Because scattering amplitudes involving RR fields are well defined, one can still attempt to compute
scattering amplitudes in RR backgrounds with the background field method

® Let’s try to formulate four-graviton amplitude in RR backgrounds at string tree-level

er;‘l'm ‘9
R T R

] 6/33



String perturbation theory in RR backgrounds

® Because scattering amplitudes involving RR fields are well defined, one can still attempt to compute
scattering amplitudes in RR backgrounds with the background field method

® Let’s try to formulate four-graviton amplitude in RR backgrounds at string tree-level

er."hvt i g_+$g
RR T R

Beckreadion: B

] 6/33



String perturbation theory in RR backgrounds

® Because scattering amplitudes involving RR fields are well defined, one can still attempt to compute
scattering amplitudes in RR backgrounds with the background field method

® Let’s try to formulate four-graviton amplitude in RR backgrounds at string tree-level

er."hvt i g_+$g
RR T R

Beckreadion: B

] 6/33



Recap

® Deforming the WS action by RR fluxes in the RNS formalism is not well defined.

I 7/33



Recap

® Deforming the WS action by RR fluxes in the RNS formalism is not well defined.

® On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.

] 7/33



Recap

® Deforming the WS action by RR fluxes in the RNS formalism is not well defined.
® On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.

® The conventional string perturbation theory based on RNS does not work for RR backgrounds.

] 7/33



Recap

® Deforming the WS action by RR fluxes in the RNS formalism is not well defined.
® On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.
® The conventional string perturbation theory based on RNS does not work for RR backgrounds.

® If we can make sense of off-shell amplitudes in string theory, we can understand RR backgrounds.

I s



Recap

® Deforming the WS action by RR fluxes in the RNS formalism is not well defined.
® On-shell amplitudes in the RR backgrounds are off-shell amplitudes in the original CFT.
® The conventional string perturbation theory based on RNS does not work for RR backgrounds.

® If we can make sense of off-shell amplitudes in string theory, we can understand RR backgrounds.

We should use string field theory!

I s



Chapter 1: What is string field theory?



What is string field theory?

® String field theory (SFT) is an attempt to formulate non-perturbative string theory at off-shell.

de Lacroix, Erbin, Kashyap, Sen, Verma 17, Sen, Zwiebach 24
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What is string field theory?

String field theory (SFT) is an attempt to formulate non-perturbative string theory at off-shell.

de Lacroix, Erbin, Kashyap, Sen, Verma 17, Sen, Zwiebach 24
® As input, string field theory takes in a well defined worldsheet CFT.
® And as output SFT gives well-defined off-shell amplitudes

® It has not yet been shown SFT is the right approach to formulate non-perturbative string theory
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What is string field theory?

® At the practical level, SFT gives the most systematic treatment of string perturbation theory.
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24..

® Importantly, to do perturbative calculations with SF'T, one does not need much more than Polchinski
“Anyone who’s taken a string theory class with Polchinski can do it”

- Minjae Cho (paraphrased)
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What is string field theory?

® As an example, let’s take bosonic string theory that has 26 bosons X* and b, ¢ ghosts
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What is string field theory?

® As an example, let’s take bosonic string theory that has 26 bosons X* and b, ¢ ghosts

® In usual string perturbation theory, on shell states are constructed as

Vi = Teee™ ™ k> =4/d, Vap.p = €uccdX X e™ X k> =0,

® One can construct string field ¥, by

U = Teee™ ™ + e,,ccdX X ™ + ...

where polarizations are now taken as string fields.

Crucially, in SF'T, on-shell condition is not imposed and k£ can take an arbitrary value.
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What is string field theory?

® With the string field, the goal is to construct an off-shell action
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® The on-shell condition for the string field is

® Therefore, one can deduce that the kinetic action must take the following form
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What is string field theory?

® With the string field, the goal is to construct an off-shell action

U = Teee™ ™ + e,,ccdX X ™™ + ...,

® The on-shell condition for the string field is

® Therefore, one can deduce that the kinetic action must take the following form

1 _
—@@Ico QslY).

® What about interaction vertices?

® The idea is to read off Feynmann vertices from off-shell scattering amplitudes
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Three-point vertex

® The three point vertex is determined by the following off-shell amplitude

e {T3} is a complicated function of polarization/string fields.
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Four-point vertex

® To compute the four-point vertex, we need to do a little more work.

® Let’s first compute four-point amplitude
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Four-point vertex

® To compute the four-point vertex, we need to do a little more work.

® Let’s first compute four-point amplitude

® We expect that some contributions to the four-point amplitude come from joining three-point vertices

® The goal is to isolate the contribution that comes purely from the four-point vertex
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Four-point vertex

® We can put z at a generic point

Y(e) Y (v)

Y(e0)

¥

® For generic z, we have a four-point vertex contribution
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Four-point vertex

® We can bring z to 0

% (o) Y(%)

30) Y0

® When z is close to 0, we have t-channel
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Four-point vertex

® To find the four-point vertex contribution, we can excise local coordinate charts around 0, 1, oo

® and integrate over z away from the blue regions

® Different choices of local coordinates correspond to field redefinitions
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What is string field theory?

® Finally, we have constructed string field action

1 - ga PN N
S(v) = *ﬁ(‘l’\co QRBlY) + Z T{‘I’ e, -

N,g
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® Finally, we have constructed string field action

1 - g2t n
S(v) = *ﬁ(‘l’\co QRBlY) + Z T{‘I’ e, -

N,g

® The action satisfies the BV master equation, and therefore path-integral of the string field is well
defined. Zwiebach 92

® In essence, SFT as we know is a self-consistent set of rules that allows off-shell computations in string
perturbation theory

® The SFT action involves infinitely many terms for infinitely many field. So, we should carefully
choose a problem
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Chapter 2: Review of GKP background.



What is GKP?

® Giddings, Kachru, Polchinski 01 (GKP) aims to stabilize complex structure z and axio-dilaton 7 in
type IIB on O3/07 orientifold of a CY3
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Andreas x2, Liam, Mariana, Thomas, Fernando, Erik

® The low-energy action contains the following terms

H;)? 1
leX\/fg(| 3 +\F3|2) , Sp3/03 szngi/”d‘lx —a=
i R

gg 9s

1
Shutk D — 5 /
4kio Jr13xx/T

® One can massage the above equations to obtain

[ / d“X[/dGX\/—G%},
R1.3 Im7

-——
2K70

HAF—}-NDS:QD;;, Gz :=F3—LH3, G_:=G3+1i%x6G3.
X/T gs
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What is GKP?

The action contains

1

T 9.2
2k%y Jr13

Sk = & XVp, Vp= [/ dGX\/—G%
Imt

HANF+ Nps =Qps, G::F;g—ng, G_ :=Gs3+i*sGs.
X/T 9gs

® (_ vanishes if G3 is a linear combination of complex (2,1) @ (0, 3) forms.

Therefore, quantized fluxes Hs and F3 induce potential for z and 1/gs.

® At the minimum of the potential, one finds

H
— %6 3:F3.
gs
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Chapter 3: SFT for GKP.



Goal

® Today we will find the background solution = B in string field theory for GKP backgrounds

® and show that vacua with small flux superpotential admit double scaling expansion

er('“fm : 5,+S3
R 1T R
Bn.céreat‘{'(lmll B

Oﬁ-sl.e”
w e ari&'-ul CET
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Set up

® As an input, SFT requires a well-defined worldsheet CFT.
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® The closest worldsheet CFT to flux compactifications we can find is
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with no quantized fluxes, and the tadpole cancellation condition is not satisfied

1
Np3 < ZNOS’

For simplicity, we choose X to be T°
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Set up

® As an input, SFT requires a well-defined worldsheet CFT.

® The closest worldsheet CFT to flux compactifications we can find is
CFT :S5* - R"® x X/Z, BCFT : D* — Dp-branes, RP* — Op-planes

with no quantized fluxes, and the tadpole cancellation condition is not satisfied
1
Np3 < ZNOS’

For simplicity, we choose X to be T°

® With this CFT, we can construct SFT action

1 2-2g+N

S(W) = =55 (Wleo Qal¥) + 37 F {9V},
S N,g *

® We want to turn on quantized fluxes F3, Hs in SFT to find a nearby vacuum
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Puzzle

® To find GKP solution in SFT we need to ensure that we can treat quantized fluxes as a small
perturbation

80 = ccHijiY'e * e 0k + gocce P SaF*Pem??5, .
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perturbation
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® This is a very confusing situation.

H;ji, and FP are quantized fluxes. So, we cannot treat them as small numbers.

Naively, this seems to suggest that we cannot treat quantized fluxes as a perturbation.
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Puzzle

® To find GKP solution in SFT we need to ensure that we can treat quantized fluxes as a small
perturbation

U = céHijkYiefqﬁwje*q;l/;k + gscéef‘zb/QEaFaﬁe*‘g/Qig .
® This is a very confusing situation.
® H;jr and FP are quantized fluxes. So, we cannot treat them as small numbers.
® Naively, this seems to suggest that we cannot treat quantized fluxes as a perturbation.

® Then, string field theory is practically useless in the context of flux compactifications.
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Resolution

® Let’s look at OPEs of the worldsheet fields
GY(z)

T

Y)Y (0) ~ — %G () log af? (2 (0) ~
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® This means that the following vertex operators depend on complex structure moduli z through G%
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Resolution

® Let’s look at OPEs of the worldsheet fields
GY(z)

T

!
i j QO ~ij i j
V(@)Y (0) ~ =5 G (2) log |z[*, ¢' ()’ (0) ~
® This means that the following vertex operators depend on complex structure moduli z through G%

0U = cEHijkYiefﬂlee*&l/_)k + gscéef¢/22aFaﬂeﬂg/2§5 .

® Following Demirtas, MK, McAllister, Moritz 19 (PFV), one can choose H and F such that
O (HipnY'e *wle *9+) = 0(=77%), O (g.e " SaF*Pe?7S5 ) = O(g.2"?)

c.f., Cicoli, Licheri, Mahanta, Maharana 22
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Resolution

® Let’s look at OPEs of the worldsheet fields
GY(z)

T

Y)Y (0) ~ — %G () log af? (2 (0) ~

® This means that the following vertex operators depend on complex structure moduli z through G%

0U = cEHijkYiefﬂlee*&l/_Jk + gscéef¢/22aFaﬂeﬂg/2§5 .

® Following Demirtas, MK, McAllister, Moritz 19 (PFV), one can choose H and F such that
6) (Hijkyie‘%fe—%’“) —0@="%), 0 (gse‘d’/QzaF"Be‘@/?iﬁ) = O(g:2""%)

c.f., Cicoli, Licheri, Mahanta, Maharana 22
® By taking the following double scaling expansion

gs =0, 271 =0, 295 = fized
we can treat ¥ as a small perturbation
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Solving EOM perturbatively

® We call the following double scaling expansion the € expansion
gs =0, 27" =0, zgs = fized

as we treat O(gs) = O(z7') = O(e).

27 /33



Solving EOM perturbatively

® We call the following double scaling expansion the € expansion
gs — 0, 27 50, zgs = fized
as we treat O(gs) = O(z™1) = O(e).

® Then, we can find an ansatz for the perturbative background solution
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Solving EOM perturbatively

® We call the following double scaling expansion the € expansion
gs — 0, 27 50, zgs = fized
as we treat O(gs) = O(z7') = O(e).
® Then, we can find an ansatz for the perturbative background solution

U= Ze”/Q\pn
n

® In this talk, we will study eom up to the second order

Qs|¥1) =0,
Qp|V2) = % [\pﬂ52 + [Ip24re2
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Solving EOM perturbatively: second order

® Let’s now study the second-order eom

QRpB|¥2) =

{‘I’ﬂ g2 T lp2ire2

N =
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® The goal is to show that the right hand side is Qp exact, and find the form of Ws.

® This equation looks very difficult to solve, as source terms are coupled to infinitely many fields
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Solving EOM perturbatively: second order
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Solving EOM perturbatively: second order

® Let’s now study the second-order eom

{\I’ﬂ g2 T lp2ire2

N =

QRB|V2) =

The goal is to show that the right hand side is @p exact, and find the form of Ws.
® This equation looks very difficult to solve, as source terms are coupled to infinitely many fields

® One can use a hack devised by Sen

Let’s define a projection operator PP that projects states to La‘ := Lo + Lo nilpotent (massless) states

® Then we can find two independent equations

QuPIWs) = P (W3] s + Pllps 0
Qn(1 - Pa) = 2(1-B) [¥3] &, + (1~ P sz
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Solving EOM perturbatively: second order

® Let’s study the massive part of the second-order eom

Qp(1 = B)|W2) = (1~ F) [93] o + (1~ B) [ g2
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Solving EOM perturbatively: second order

® Let’s study the massive part of the second-order eom
1
Qp(1-DP)|¥s) = 5(1 -P) [\I’ﬂ g2 T (1 —P)[p2sre2

® For (1 —P) projected states, Qg is an invertible operator via {Qs, ba‘} = La’
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Solving EOM perturbatively: second order

® Let’s study the massive part of the second-order eom

Qu(1 = B)|W2) = (1~ B) [#] o + (1~ P) [ g2

For (1 — IP) projected states, @ is an invertible operator via {Qs, ba‘} = La’

® As a result, eom for infinitely massive states is trivially solved

bt 1 2
A-P)¥2) = % |51 -P) [¥1] g2 + (1 = P)[] p2 ymee

® Note that b /L{ corresponds to the Green’s function in target space.
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Solving EOM perturbatively: second order

® Let’s study the L(T nilpotent part of the second-order eom

1
QBP|Ys) = §P [‘I’ﬂ g2 T Pllp21gp2
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Solving EOM perturbatively: second order

Let’s study the L(T nilpotent part of the second-order eom

1
QBP|Ys) = §P [‘I’ﬂ g2 T Pllp21gp2

® Because Qg is not an invertible operator for L nilpotent states, one needs to do an actual work here.

After CFT gymnastics, at the F-term minimum, one arrives at

40’

g2 P(W2)vsns = = 3955 ggecé(BabBab(néfe_M — 0¢ije %) — 2Bac B ey e 4
c 10Js
. o abc o= —¢ —26 77 -7 —2¢
—2i EBabH (0c + 0¢) (e Yee” TOE+ e Tpee 5‘5) .

® Existence of the solution to low-energy SUGRA is not a sufficient condition for the existence of the
SFT background.
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Conclusions
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Take home messages

® String field theory provides a systematic framework to study generic backgrounds.
® Provided that sugra solutions are well controlled, finding SF'T counterpart isn’t very difficult.
® Using the background solution in SFT, one can now compute string amplitudes in RR backgrounds

® cg., o and gs corrections in the flux backgrounds, or more econonomic choice is to extend SFT
solutions to higher orders. (c.f., talk by Liam McAllister and Andreas Schachner)

® The rules of the computations are not completely known. Opportunities for investigations.
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Future directions

® We are computing killing spinor equations to extend the solutions to higher orders Minjae Cho, MK

24XX.XXXXX
® One-loop graviton amplitudes in orientifold compactifications w. 1. P.
® One can also study flux compactifications in type IIA, (non-supersymmetric) heterotic string theories.

® Probably there are many more exciting directions! If you are interested, let’s chat!
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