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I. 10D Tachyon-Free Models



The  (SUSY) 10D-11D  Hexagon

• Perturbative  Solid arrows 

• [ 10&11D supergravity  Dashed arrows ]

•  Highest point of (SUSY) String Theory

BUT:

• Exhibits dramatically our limitations

•  SUSY: stabilizes the 10D Minkowski vacua

BROKEN SUSY ? 
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(Witten, 1995)



The  10D-11D  Zoo
• Non-SUSY closed & orientifolds

   ∃  3 non-SUSY non-tachyonic strings

• SO(16)xSO(16)

• 0’B U(32)

• [BSB: Usp(32)]

(Dixon, Harvey, 1986)
(Alvarez-Gaumé, Ginsparg, Moore, Vafa, 1987)

(Sugimoto, 1999, Antoniadis, Dudas, AS, 1999)

(AS, 1995)
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(Seiberg, Witten, 1986)
(Dixon, Harvey, 1986)
(Bianchi, AS, 1990)

• NO SUPERSYMMETRY  (typically) TACHYONS
• Fairly enough: we are still UNABLE to cope with them
• ∃ three 10D theories without supersymmetry BUT NO TACHYONS:

1) Heterotic variant 2) Exotic descendant of  “tachyonic 0B” 3) Brane SUSY breaking



The Non-Tachyonic  10D String Models

(Dixon, Harvey, 1987)
(Alvarez-Gaumé, Ginsparg, Moore, Vafa, 1987)

(Sugimoto, 1999, Antoniadis, Dudas, AS, 1999)

(AS, 1995)
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SO(16)xSO(16):

U(32):

USp(32):
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The Non-Tachyonic  10D String Models

3’

“- signs”: (Schellekens and Warner, 1987)

Standard choice:

Can change it compatibly with the fusion rules:
         (as in 2D WZW models of ADE series)   

A

A
S

(Pradisi, AS, Stanev, 1994)
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Back-Reaction on the Vacuum
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      a. Consistency conditions
• Dual Role of Vacuum amplitudes in String Theory: 

    b.  Backreaction on vacuum

• AT BEST: Double expansion in powers of               and   

•  VERY DIFFICULT: one can at least EXPLORE the dominant terms … AND YET …



Back-Reaction on the Vacuum

4

VACUUM 
ENERGY 
“TADPOLE 

POTENTIAL”

      a. Consistency conditions
• Dual Role of Vacuum amplitudes in String Theory: 

    b.  Backreaction on vacuum

• AT BEST: Double expansion in powers of               and   

•  VERY DIFFICULT: one can at least EXPLORE the dominant terms … AND YET …



II. Brane Supersymmetry Breaking
(non-linear supersymmetry in D=10)



Brane  SUSY  Breaking (BSB) (Sugimoto, 1999)
(Antoniadis, Dudas, AS, 1999)
(Angelantonj, 1999)
(Aldazabal, Uranga, 1999)

 NO TACHYONS
 Non-linear SUSY: ∃ goldstino!

(Dudas, Mourad, 2000)
(Pradisi, Riccioni, 2001)
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NON-LINEAR REALIZATIONS: USUALLY limits of linear ones. WHAT ARE THE “HIGGS” MODES HERE?

In D=10 BSB an OPTION, in lower dimensions INEVITABLE WITH special Klein-bottle projections

SUSY IN CLOSED SPECTRUM, NOT IN OPEN: a puzzle noted in Rome in the early ’90’s (see hep-th/9302099), 

Work with M. Bianchi and G. Pradisi  [See also 2403.02392 for recent developments]
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III. The Climbing Scalar
(Different Cosmological dynamics with V = eγφ for γ <γc  & γ≥γc )



Cosmology: “Critical”Potential & Climbing Scalar
WHAT POTENTIALS LEAD TO SLOW-ROLL, AND WHERE ?  

Driving force from V’  vs  friction from V

• IF V does not vanish : a convenient gauge “makes the damping term neater” 

• NOW:  driving  from  logV vs  O(1) damping

 Quadratic  potential?         Far  away  from  origin (Linde, 1983)

 Exponential  potential?     YES   or  NO

6

(Dudas and Mourad, 2000)

(Dudas, Kitazawa, AS, 2010)
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V = e 2γϕ:  Climbing  &  Descending  Scalars

•  γ <  1 ?      Both  signs  of  speed allowed 

a. “Climbing” solution (ϕ climbs, then descends):
b. “Descending” solution (ϕ only descends ):

Limiting  τ- speed (LM attractor):

γ = 1  is  “critical”:  LM attractor  &  descending  solution  disappear  for γ ≥ 1

(Lucchin and Matarrese, 1985)

(Halliwell, 1987;…, Dudas and Mourad, 2000; Russo, 2004) 
(Dudas, Kitazawa, AS, 2010)

7

Follow solutions back to the initial singularity:

(HERE we work with γc = 1 ) 
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Cosmology: a Climbing Scalar as Trigger of Inflation?
CLIMBING & SLOW-ROLL ?  With (super)critical Exponential (e.g. + Starobinsky)  FIXED INITIAL CONDITIONS

DAMPED LOW END of primordial power spectrum  POSSIBLY: damping of first CMB multipoles (cfr. lack-of-power)
[ + enhanced tensor-to-scalar ratio at the transition]
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[ Corrects Chibisov-Mukhanov tilt by ∆ ]

(Gruppuso, Mandolesi, Natoli, Kitazawa, AS, 2015)
(+ Lattanzi, 2017)

(Dudas, Kitazawa, Patil, AS, 2013)
(Kitazawa, AS, 2014)



Climbing  Scalar : Instability of Isotropy
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 COSMOLOGY : the issue is the time evolution of perturbations
  INITIALLY (large η) V is negligible: tensor perturbations evolve as

  NOTE: logarithmic growth for k=0 (instability of isotropy) !!

  RESONATES with

(Basile, Mourad, AS, 2018)

(HINT of) Dynamical origin of compactification ?

(Kim, Nishimura, Tsuchiya, 2018)
(Anagnostopoulos, Auma, Ito, Nishimura, Papadoulis, 2018)



IV. The Dudas-Mourad Vacua
(Tadpole-driven compactifications on intervals,

with strongly coupled portions and yet perturbatively stable)



9D  Dudas-Mourad Vacua (for orientifolds)
(Dudas, and Mourad, 2000, 2001)

 9D solutions      T DRIVES  compactification  & KK CIRCLEINTERVAL 
   [For Usp(32) and U(32), & similar for SO(16) x SO(16) ]

 SPONTANEOUS COMPACTIFICATIONS: INTERVALS of FINITE length ~ 𝟏𝟏
𝑻𝑻

 FINITE 9D Planck mass & gauge coupling

• At ends: gs (∞,0) & curvature diverges

• ASYMPTOTICS:  Kasner-like (FREE!)

• EXTENSIONS:                      Orientifold γ : “CRITICAL” !

• ARE large values of curvature & gs INEVITABLE in these non-SUSY compactifications? 
• STABILITY ? 
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 Dudas-Mourad:  ∃STRONG  COUPLING END  but  STABLE VACUUM ! 

• SETUP : Scalar perturbations:

 Schrödinger-like form:

BUT:  Boundary Conditions !
10

Dudas-Mourad Vacua : Stability , I (Basile Mourad, AS, 2018)



 SELF-ADOINT EXTENSIONS (boundary conditions)  COMPLETE SETS of modes
 In conformal coordinate along the [0,zm] interval  Schrödinger form
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(Mourad, AS, 2023)

 Generic self-adjoint boundary conditions: points in SL(2,R) x U(1)

 Link between ends ALSO characterized by a matrix V of SL(2,R) (Wronskian is CONSTANT)

 Eigenvalue equation: 

 Boundary conditions given independently at the ends: ρ  ∞ (Boundary of SL(2,R))

Self-Adjoint Extensions

& ∀ two solutions



 SELF-ADOINT EXTENSIONS (boundary conditions)  COMPLETE SETS of NORMALIZABLE modes
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Singular Potentials & Self-Adjoint Extensions (Mourad, AS, 2023)

•  Two choices at z=0  ONLY IF µ < 1 (and similarly at right end)

• In the cases of interest for γ ≤ γc :

Legendre functions
(& Exact zero modes)

 The possible self—adjoint extensions depend on µ

a)  µ ≥ 1 : UNIQUE b.c.  SCALAR MODES (MASSIVE)
b)  µ < 1 : b.c. ∈ SL(2,R) x U(1)  [indep.: AdS3 boundary (θ1,θ2)]  TENSOR & VECTOR MODES

STABILITY ANALYSIS  (m2 > 0)    EXACT LEGENDRE EIGENVALUE EQUATION
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Dudas-Mourad Vacua : Stability , II (Mourad, AS, 2023)

Tensor Modes (µ=0) :

Scalar Modes (µ=1)

Vector Modes (µ=3/8) :

• (Singular) potentials closely approximated by Legendre ones
• Exact eigenvalue equations
• Vertical adjustments: compare with the exact zero modes

Contour lines 
of fixed tachyon mass
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Dudas-Mourad Vacua : Stability , II (Mourad, AS, 2023)

Tensor Modes (µ=0) :

Scalar Modes (µ=1)

Vector Modes (µ=3/8) :

UNIQUE stable b.c. (π,0)
(massless 9D graviton !)

UNIQUE b.c.
[up to vertical adjustment]

(massive scalar)

WIDE stability regions
(generic massive/massless vector)

• (Singular) potentials closely approximated by Legendre ones
• Exact eigenvalue equations
• Vertical adjustments: compare with the exact zero modes

Contour lines 
of fixed tachyon mass



V. Some Further Developments
(Insights on the nature of boundaries)



(Mourad, AS, 2021) 
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Md x I x T 9-d Vacua with TADPOLE Potential

INTERNAL INTERVAL again: the TWO GROUPS OF COLUMNS refer to its LEFT and RIGHT ends

• F and ∞ : finite or infinite distances from r=0

• (0, A, ∞ ): gs vanishes, can be anything (zero, finite or infinite, depending on parameters)

• (0):  the vacuum approaches asymptotically the (an)isotropic T=0 solutions
    [links with Blumenhagen et al (2021-23) & Uranga et al (2022-23)]
• (≠0):  the tension T is NOT sub-dominant in the limiting region

NOTE:  SHARP CHANGE OF BEHAVIOR across γ=γc
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 Five-form flux in IIB       ϕ CONSTANT, SPATIAL INTERVAL of length l

D=4 with Fluxes on T5 x I (Mourad, AS, 2023)

 FINITE gs , BUT STILL CURVATURE SINGULARITY ]

• SUSY BREAKING scale ~ 1/l
• SUSY recovered asymptotically at one end

• Less familiar tensor eqs: (+ Einstein eqs.)

• Interval of FINITE length :

• PERTURBATIONS:  →  Schrödinger-like systems  ∃ STABLE BOUNDARY CONDITONS! 
                  (Hypergeometric setup)
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USED EXTENSIVELY: (Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, 2001 )



(Mourad, AS, 2022, 2023) 
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A Closer Look at the Interval, I
One can “explore” the interval with a probe brane :

BPS r=0 endpoint ! (consistently w. Killing spinor emerging as ρ→∞) 

NO FORCE: if T3 and q3 are TUNED (the factor ½ depends on conventions)

The probe brane feels the potential below:
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Einstein action with York-Gibbons-Hawking term & its variation :

This reveals TENSION (and CHARGE) of an EFFECTIVE BPS O3 orientifold at r=0
Neat realization of “dynamical cobordism” (HERE protected by SUSY)

A Closer Look at the Interval, II (Mourad, AS, 2022, 2023) 

• SITUATION LESS CLEAR at other NON-SUSY end (BUT opposite charge)

M4

T5

r=0 r=∞

(McNamara, Vafa, 2019)
(Uranga et al, 2021)
(Blumehagen et al, 2021)
(Raucci, 2022)



 Tadpoles Dudas-Mourad vacua: BOUNDARIES play a key role !

 STABILITY: NO tachyon modes emerge   [cfr UNSTABLE AdS x S !]

• (Proportional) Tension & charge of EFFECTIVE (SUSY) ORIENTIFOLD at one end

• ∃ (explicit) correspondence with work on “Dynamical Cobordism”
 [See: (Bergshoeff, Riccioni et al, 2006 –) for a wide zoo of lower-dimensional branes built via SUGRA U-dualities]

 COSMOLOGY: climbing & inflation  (lack-of-power [ enhanced tens.-to-scal. ratio]
                [& non-Gaussianities?]
• INTRIGUING INSTABILITY OF ISOTROPY (k=0) in “climbing scalar” Cosmology : 4D by accident?

 BRANES & TADPOLES  (un)charged branes in Dudas-Mourad vacua  (Salvatore Raucci’s talk)

         (2406.14296, 2406.16327)

Summarizing
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(Basile, Mourad, AS, 2018)
(Raucci, 2023)
(Mourad, AS, 2023)

(McNamara, Vafa, 2019)
(Uranga et al, 2021)
(Blumehagen et al, 2021)
(Raucci, 2022)



Thank  You
for

Your Attention
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