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(2) fluxes induce positive charges that needs to be cancelled globally wmaidacena, nufiez 00

(1) 1IB/F-theory most studied setup: flux solutions M. , , X CY

— Drawback: odd fluxes (f;, F5) = only complex structure mod stabilized
Kahler moduli not stabilized

(2) Common lore: fluxes that have @O(1) charge can stabilize a number of moduli

* Tadpole conjecture: common lore not true!
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For a large number of moduli stabilized at a generic point
in moduli space, the induced charge Ng,, satisfies

IV, flux > Mstab

(1) Ng,x grows linearly with n.,

1

(2) Refined conjecture: coefficient of the linear growth a > 3

Here: We spectacularly confirm (1) in non-geometric backgrounds

(2) with o > ... stay awake &
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- Fluxes induce D3-charge.ln a compact space total charge should be zero

* In type lIB with 3-form fluxes

Ny = JF3AH3 < [Qps]

* D7-branes wrapped on 4 cycles also have negative charge (and D7-moduli)

c.s., dilaton and D7 moduli

* Unified description in F-theory (can be stabilized by G,)
Nyyx = 1/G NGy < XY 1113’1 for erge A 1(23’1 +h'! — %1+ 8)
fux =g f AT =T Ty p31 24 4
H,. F3 g e hn;ggz;tive

flux on D7 from D7/0O7
- 1 "
Tadpole conjecture If @ > =, cannot stabilize

Nyyx > g, all moduli in F-theory
(if number is large)!
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mirror duals of rigid Calabi-Yau manifolds S

rigid Calabi-Yau

htl=0!
1 1
0 0 0 0
0 h 0 0 0 0
1 0 0 ] . > ] h h 1 No volume form
O 72 0 O 0 0 JAJAT=vol
0 0 0 0 A
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Not a manifold
But perfectly fine from the world-sheet point of view
Description in terms of Landau-Ginzburg models Vafa ‘89

Standard notions in geometric flux compactifications (flux superpotential, tadpole) still apply
Becker, Becker,Vafa, Walcher ‘06
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* h2! complex structure moduli (volumes of 3-cycles)  ~ ©(100)

- Add 3-form fluxes
€T

y
J Fy=M" J H, = K" N=1,..,2h2" +2
r, r,

basis of 3-cycles

- In the 4d EFT: potential for complex structure moduli (and dilaton)

G3 =F3—TH3

_ K 2 2 i
V=e¢ <|DIW| —3|W|> with W:[ Gy;AQ ~(M—-1K)f(2)
CcY

Gukov, Vafa, Witten 99
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-Inthe4d /" =1 EFT

V=eK<|DW|2—3|W|2> with 14 J Gy AQ ~ (M —1K)f(z")
cY

- SUSY minima at
® D,W =0 — equation for complex structure moduli: get a vev depending on M", K"
D,W = [ G; Ay = G122 =
“(2.1) forms
¢ DW=0KW=0 — W,=0.No equation for Kahler moduli. Unfixed by fluxes
=> G0 =0

- SUSY vacua are Minkowski

Niux = JF3 AHy;=M"K, < |Qps|
at minimum

H3 = *Fg > O
(dilaton eq says G = 0)

- Tadpole cancelation condition



lIB Landau Ginzburg models with flux

* h2! complex structure moduli ((c,c) marginal deformations or RR ground states in CFT)

- Add 3-form fluxes
€T

.
J F,=M" J H, = K" N=1,.. 2h>1 +2
r, r,

basis of 3-cycles (susy cycles wrapped by A-branes <> bdy cond in the CFT)

-4d N =1 EFT
Gy, = F;—tH,

v=eK(IDWE -3 1wP) with

Becker, Becker,
Vafa,Walcher 06

W=[ Gy ANQ ~ (M —11K)f(2)
cy
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- SUSY vacua are Minkowski (W, = 0) , or AdS (W, # 0)

- Here restrict to Minkowski (W, = 0). Adding D.W =0 = G*! only

—_— —_— n
- Tadpole cancelation condition Ny = JF3 Ay = MK, < | Qo3|
at Mink minimum > ()

H3 = *Fg
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Kahler potential superpotential W(;t lq)i) = A W((Dl)
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- Lead to 4-dimensional ./ = 2 string vacua (as CY)
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Landau Ginzburg orbifolds

- Can orientifold; quotient by € o.

W (6(®)) = =W (D)

E.g.in kK" model (% = Z ®¥*2)  can take o(®;) = ™ I,

i=1

Two particularly interesting K models withc =9 A" =0

|Q03| =12
T6
mirror of
Zy X 25

mirror of
Ly X 2y
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- Moduli: Deformations of % ( for concreteness all that follows for 2°)

6
_ 4 1 R _
W_Zd)i+2tLCDL o= ol o L=, 0
i=1 L=1 [.=1,2,3

- Marginal deformations ) (,—1) =4

- Look for stabilisation at Fermat point: =0

(1.1,1,1,1,1) (33.33.3.3)
! !

L 6 | 10| 14 | 18
(P.q@)| (3,0)| (2,1)(1,2) {(0,3)

L: complex forms
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- Fluxes EZ L=(,....l) =123 L: complex forms

J Fy=M" [ H,=K" N=ny,...,ng) n,=0,1,23  N:real cycles / forms
r

(not all independent)

- Moduli stabilisation

W= JG3 AQ =) (MY —KM)Qy, Qy = J e @G ~ N 1yt i)Y
N 1—1N p
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Fluxes & Moduli stabilisation

- Massive moduli

Mags = rank M Xl.=14 =1 .
D,DW D,D;:W D,D,W W 0,0,W 0
M= DDW = 1~y IJ_ _ 1~y 81]_ H _ 197 )
D;D,W D;D;W J Ipw=o guW  DiDiW ] | pw=o,w,=0 0  do;W
Nass = Tank (0,0,W) Independent of the Kihler potential
- Note!

M ass S Mgtab < 3N, flux

tadpole conjecture

- Here testing a weaker form of tadpole conjecture
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Two alternative procedures

-Turn on G; on one, two, three,... L' component (£ I, = 10)

— € H*Y automatic
— MY, K" € Z to be imposed
- Turn on F5, H; on one, two, three,... I ,, component
— MV KN € Z automatic
— G; € H*VY to be imposed

® Can be done exhaustively (using S; permutations) up to ~ 8 components

® Beyond: use algorithms for smart search (start from a set of minimal length vectors)

o COmPUte Nﬂux > Mmass

Nﬂux — JF3 A\ H3 — MNKN

n = rank (0,0,W)

mass

i I
Nyux = - |Gz A Gy =— |G|
2T

T—7T )
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Not weak coupling!

Tadpole conjecture

1
N, flux > Enstab

n
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here: stabilized at quadratic order ~ Nigher orders
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|Qo3| = 40
h>! =90

N, flux

60_—
501

40¢

Becker, Brady, MG, Morros, Sengupta, You

Tadpole conjecture

1
N, fux Znstab

3 Rgtab
1
n Rgtan
80 Mgtab
In F-theory X 1

tadpole cond: {Vflux = 4 = anod
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-Linear behavior (even beyond tadpole bound)

. 1 . 1
-Coefficient a > " (vs original value 3)

* Clarified many questions

— |s it only valid for stabilisation of all moduli as originally stated?

No, more general than that, valid for 10 < n.,, < 71,4

— Moduli stabilized or (more restrictively) massive? (77, < Hgeap)

We/many others checked massive, but results in 1° at higher order indicate also true

. Becker, Rajagaru, Sengupta, Walcher,Wrase 24
— Does it apply beyond tadpole bound!?

see Rajagaru’s talk on Tuesday

Yes! Related story by Grimm
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Conclusions

!
Nuux > 71 tab at generic pt
—» Does it apply to susy/Minkowski solutions only? BT 4 EREestER

D,D;W W
Probably yes  m|,, .= """ S
suW DiDjW

flux _ 3
o 1052

S.Lust,Wiesner22

N,

Shown e.g W, # 0 sol at point with discrete symmetry with

Here if W, # 0 = AdS

— What does generic point mean?

A point where non-Abelian gauge symmetries is not generic (K3 x K3)
Bena, Blaback, M.G,, Liist 20

Braun, Fraiman, MG, Lust, Parra de Freitas 23

A point with discrete symmetries (Fermat) satisfies tadpole conjecture

Generic = no non-Abelian gauge symmetries!?



Conclusions

N, flux > —Hgtap

— |s it a sugra/classical/O(a')/geometric statement?

We've shown that it applies beyond all of that!!



Conclusions

N, flux > —Hgtap

— |s it a sugra/classical/O(a’)/geometric statement?

We've shown that it applies beyond all of that!!

* To stabilise all complex structure/dilaton moduli with W,; = 0 need either:

—» Small A%1

1
— Type lIB orientifolds with | Q5| > 2 h!



Conclusions

N, flux > —Hgtap

— [s it a sugra/classical/O(a’)/geometric statement?

We've shown that it applies beyond all of that!!

* To stabilise all complex structure/dilaton moduli with W,; = 0 need either:

— Small A%!

1
— Type lIB orientifolds with | Q5| > 2 h?!

THANK YOU!



