The Tadpole Conjecture beyond geometry

Mariana Graña CEA / Saclay France

Work in collaboration with

Katrin Becker, Nathan Brady, Miguel Morros, Anindya Sengupta and Qin You arXiv: 2407.xxxxx

Iosif Bena, Johan Blåbäck and Severin Lüst

Bena, Braun, Brodie, Fraiman, Grimm, van de Heisteeg, Herraez, S. Lust, Parra de Freitas, Plauschinn

20-23

arXiv: 2010.10519

• Flux compactifications: building block in string pheno because of moduli stabilization

Dasgupta, Rajest

Dasgupta, Rajesh, Sethi 99 Giddings, Kachru, Polchinski 01

• Flux compactifications: building block in string pheno because of moduli stabilization

Dasgupta, Rajesh, Sethi 99

Giddings, Kachru, Polchinski 01

- But
- (1) fluxes back-react on geometry
- (2) fluxes induce positive charges that needs to be cancelled globally Maldacena, Nuñez 00

• Flux compactifications: building block in string pheno because of moduli stabilization

Dasgupta, Rajesh, Sethi 99

- But
- (1) fluxes back-react on geometry
- (2) fluxes induce positive charges that needs to be cancelled globally Maldacena, Nuñez 00

Giddings, Kachru, Polchinski 01

- (1) IIB/F-theory most studied setup: flux solutions $M_{\rm ink4} \times_w {\rm CY}$
 - \rightarrow Drawback: odd fluxes $(H_3, F_3) \Rightarrow$ only complex structure mod stabilized Kähler moduli not stabilized

• Flux compactifications: building block in string pheno because of moduli stabilization

Dasgupta, Rajesh, Sethi 99

- But
- (1) fluxes back-react on geometry
- (2) fluxes induce positive charges that needs to be cancelled globally Maldacena, Nuñez 00

Giddings, Kachru, Polchinski 01

- (1) IIB/F-theory most studied setup: flux solutions $M_{\rm ink4} \times_w {\rm CY}$
 - \rightarrow Drawback: odd fluxes $(H_3, F_3) \Rightarrow$ only complex structure mod stabilized Kähler moduli not stabilized
- (2) Common lore: fluxes that have $\mathcal{O}(1)$ charge can stabilize a number of moduli

- Flux compactifications: building block in string pheno because of moduli stabilization

 Dasgupta, Rajesh, Sethi 99

 Giddings, Kachru, Polchinski 01
- But
- (1) fluxes back-react on geometry
- (2) fluxes induce positive charges that needs to be cancelled globally Maldacena, Nuñez 00
- (1) IIB/F-theory most studied setup: flux solutions $M_{\text{ink4}} \times_{w} \text{CY}$
 - \rightarrow Drawback: odd fluxes $(H_3, F_3) \Rightarrow$ only complex structure mod stabilized Kähler moduli not stabilized
- (2) Common lore: fluxes that have $\mathcal{O}(1)$ charge can stabilize a number of moduli

• Tadpole conjecture: common lore not true!

For a large number of moduli stabilized at a generic point in moduli space, the induced charge $N_{\rm flux}$ satisfies

$$N_{\rm flux} > \alpha n_{\rm stab}$$

For a large number of moduli stabilized at a generic point in moduli space, the induced charge $N_{\rm flux}$ satisfies

$$N_{\rm flux} > \alpha n_{\rm stab}$$

(1) N_{flux} grows linearly with n_{stab}

For a large number of moduli stabilized at a generic point in moduli space, the induced charge $N_{\rm flux}$ satisfies

$$N_{\rm flux} > \alpha n_{\rm stab}$$

- (1) $N_{\rm flux}$ grows linearly with $n_{\rm stab}$
- (2) Refined conjecture: coefficient of the linear growth $\alpha > \frac{1}{3}$

For a large number of moduli stabilized at a generic point in moduli space, the induced charge $N_{\rm flux}$ satisfies

$$N_{\rm flux} > \alpha n_{\rm stab}$$

- (1) N_{flux} grows linearly with n_{stab}
- (2) Refined conjecture: coefficient of the linear growth $\alpha > \frac{1}{3}$

Here: We spectacularly confirm (1) in non-geometric backgrounds

For a large number of moduli stabilized at a generic point in moduli space, the induced charge $N_{\rm flux}$ satisfies

$$N_{\rm flux} > \alpha n_{\rm stab}$$

- (1) $N_{\rm flux}$ grows linearly with $n_{\rm stab}$
- (2) Refined conjecture: coefficient of the linear growth $\alpha > \frac{1}{3}$

Here: We spectacularly confirm (1) in non-geometric backgrounds

(2) with $\alpha > \dots$

For a large number of moduli stabilized at a generic point in moduli space, the induced charge $N_{\rm flux}$ satisfies

$$N_{\rm flux} > \alpha n_{\rm stab}$$

- (1) N_{flux} grows linearly with n_{stab}
- (2) Refined conjecture: coefficient of the linear growth $\alpha > \frac{1}{3}$

Here: We spectacularly confirm (1) in non-geometric backgrounds

(2) with $\alpha > \dots$ stay awake

- Fluxes induce D3-charge. In a compact space total charge should be zero
- In type IIB with 3-form fluxes

$$N_{\text{flux}} = \int F_3 \wedge H_3 \le |Q_{O3}|$$

- Fluxes induce D3-charge. In a compact space total charge should be zero
- In type IIB with 3-form fluxes

$$N_{\text{flux}} = \int F_3 \wedge H_3 \le |Q_{O3}|$$

- D7-branes wrapped on 4 cycles also have negative charge (and D7-moduli)
- Unified description in F-theory

- Fluxes induce D3-charge. In a compact space total charge should be zero
- In type IIB with 3-form fluxes

$$N_{\text{flux}} = \int F_3 \wedge H_3 \le |Q_{O3}|$$

- D7-branes wrapped on 4 cycles also have negative charge (and D7-moduli)
- Unified description in F-theory

$$N_{\mathrm{flux}} = \frac{1}{2} \int G_4 \wedge G_4 \leq \frac{\chi(CY_4)}{24}$$

$$H_3, F_3 \text{ and flux on D7} \qquad \text{all the negative } 3\text{-charge from D7/O7}$$

- Fluxes induce D3-charge. In a compact space total charge should be zero
- In type IIB with 3-form fluxes

$$N_{\text{flux}} = \int F_3 \wedge H_3 \le |Q_{O3}|$$

- D7-branes wrapped on 4 cycles also have negative charge (and D7-moduli)
- Unified description in F-theory

$$N_{\mathrm{flux}} = \frac{1}{2} \int G_4 \wedge G_4 \leq \frac{\chi(CY_4)}{24}$$

$$H_3, F_3 \text{ and flux on D7}$$
all the negative 3-charge from D7/O7

c.s., dilaton and D7 moduli (can be stabilized by G_4)

$$\frac{\chi}{24} = \frac{1}{4}(h^{3,1} + h^{1,1} - h^{2,1} + 8)$$

- Fluxes induce D3-charge. In a compact space total charge should be zero
- In type IIB with 3-form fluxes

$$N_{\text{flux}} = \int F_3 \wedge H_3 \le |Q_{O3}|$$

- D7-branes wrapped on 4 cycles also have negative charge (and D7-moduli)
- Unified description in F-theory

$$N_{\rm flux} = \frac{1}{2} \int G_4 \wedge G_4 \leq \frac{\chi(CY_4)}{24} \sim \frac{1}{4} h^{3,1} \qquad \text{for large} \\ \frac{H_3, F_3 \text{ and}}{\text{flux on D7}} \qquad \text{all the negative} \\ 3\text{-charge} \\ \text{from D7/O7} \qquad \text{from D7/O7}$$

c.s., dilaton and D7 moduli (can be stabilized by G_4)

$$\frac{\chi}{24} = \frac{1}{4}(h^{3,1} + h^{1,1} - h^{2,1} + 8)$$

- Fluxes induce D3-charge. In a compact space total charge should be zero
- In type IIB with 3-form fluxes

$$N_{\text{flux}} = \int F_3 \wedge H_3 \le |Q_{O3}|$$

- D7-branes wrapped on 4 cycles also have negative charge (and D7-moduli)
- Unified description in F-theory

$$N_{\rm flux} = \frac{1}{2} \int G_4 \wedge G_4 \leq \frac{\chi(CY_4)}{24} \sim \frac{1}{4} h^{3,1} \qquad \text{for large} \\ H_3, F_3 \text{ and} \\ \text{flux on D7} \qquad \text{all the negative} \\ 3\text{-charge} \\ \text{from D7/O7}$$

c.s., dilaton and D7 moduli (can be stabilized by G_4)

$$\frac{\chi}{24} = \frac{1}{4}(h^{3,1} + h^{1,1} - h^{2,1} + 8)$$

- Fluxes induce D3-charge. In a compact space total charge should be zero
- In type IIB with 3-form fluxes

$$N_{\text{flux}} = \int F_3 \wedge H_3 \le |Q_{O3}|$$

- D7-branes wrapped on 4 cycles also have negative charge (and D7-moduli)
- Unified description in F-theory

$$N_{\mathrm{flux}} = \frac{1}{2} \int G_4 \wedge G_4 \leq \frac{\chi(CY_4)}{24} \sim \frac{1}{4} h^{3,1}$$
 for large $h^{3,1}$ all the negative 3-charge from D7/O7

c.s., dilaton and D7 moduli (can be stabilized by G_4)

$$\frac{\chi}{24} = \frac{1}{4}(h^{3,1} + h^{1,1} - h^{2,1} + 8)$$

Tadpole conjecture

$$N_{\rm flux} > \alpha n_{\rm stab}$$

If $\alpha > \frac{1}{4}$, cannot stabilize all moduli in F-theory (if number is large)!

Supporting examples for $\frac{N_{\text{flux}}}{n_{\text{stab}}} > \frac{1}{3}$ in CY, with $n_{\text{stab}} = n_{\text{moduli}}$

Description	n_{stab}	$N_{ m flux}$	$\alpha = \frac{N_{\text{flux}}}{n_{\text{stab}}}$	Ref	
IIB at symm pt in mod space	$h^{2,1} = 128$	48	0.38	Giryavets, Kachru, Tripathy, Trivedi 03	
	$h^{2,1} = 272$	124	0.46	Demirtas, Kim, Mc Allister, Morritz 19	
F-theory on sextic CY at symm point	$h^{3,1} = 426$	775/4 587/4	0.45 0.34	Braun, Valandro 20 Braun, Fortin, Lopez Garcia, Villaflor Loyola 24 See Braun's talk	
F-theory on CP ³ base	$n_7 = 3728$	1638	0.44	Collinucci, Denef Esole 08	
F-theory on K3xK3	$n_{\text{mod}} = 57$	25	0.44	Bena, Blåbäck, M.G., Lust 20	
IIB on (3,51) CY ₃ at large complex structure	$h^{2,1} = 51$	36	0.35	Coudarchet, Marchesano, Prieto, Urkiola '23	

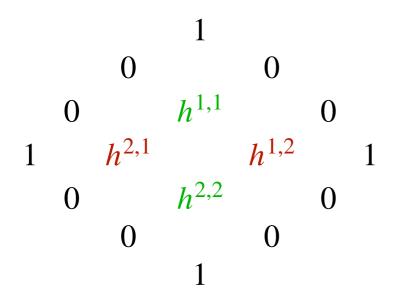
Supporting examples for linear behavior $N_{\rm flux} > \alpha \, n_{\rm stab}$

Description	$n_{ m stab}$	$N_{ m flux}$	$\alpha = \frac{N_{\text{flux}}}{n_{\text{stab}}}$	Ref
F-theory on any weak-Fano base	$n_7 = 58c_1^3(B) + 16$	$\frac{7}{16}(58c_1^3(B) + 15)$	0.44	Bena, Brodie, M.G. 21
F-theory on CY at LARGE complex structure	$n_{\mathrm{stab}} \leq n_{\mathrm{mod}}$	αn	in all exemples	M.G., Grimm, van de Heisteeg, Herraez, Plauschinn 22

Supporting examples for linear behavior $N_{\rm flux} > \alpha \, n_{\rm stab}$

Description	$n_{ m stab}$	$N_{ m flux}$	$\alpha = \frac{N_{\text{flux}}}{n_{\text{stab}}}$	Ref
F-theory on any weak-Fano base	$n_7 = 58c_1^3(B) + 16$	$\frac{7}{16}(58c_1^3(B) + 15)$	0.44	Bena, Brodie, M.G. 21
F-theory on CY at LARGE complex structure	$n_{\mathrm{stab}} \leq n_{\mathrm{mod}}$	αn	in an exemples	M.G., Grimm, van de Heisteeg, Herraez, Plauschinn 22
HERE!				

Hodge diamond of a Calabi-Yau



Hodge diamond of a Calabi-Yau

On the two-dimensional (2,2) SCFT on the world-sheet of strings in CY:

 $h^{2,1}$: marginal deformations in the (c,c) ring

 $h^{1,1}$: marginal deformations in the (a,c) ring

Hodge diamond of a Calabi-Yau

On the two-dimensional (2,2) SCFT on the world-sheet of strings in CY:

$$h^{2,1}$$
: marginal deformations in the (c,c) ring $$\stackrel{*}{\ }$$ symmetry

Lecher, Vafa, Warner '89

 $h^{1,1}$: marginal deformations in the (a,c) ring

Hodge diamond of a Calabi-Yau

On the two-dimensional (2,2) SCFT on the world-sheet of strings in CY:

 $h^{2,1}$: marginal deformations in the (c,c) ring symmetry Symmetry Lecher, Vafa, Warner '89 $h^{1,1}$: marginal deformations in the (a,c) ring

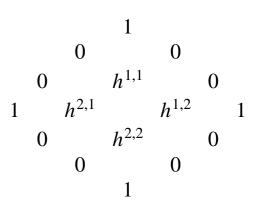
Hodge diamond of a Calabi-Yau

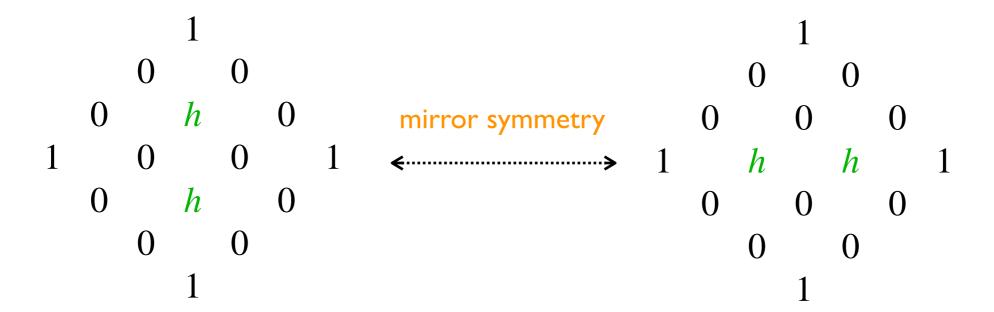
On the two-dimensional (2,2) SCFT on the world-sheet of strings in CY:

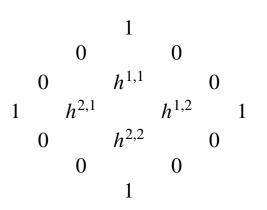
 $h^{2,1}$: marginal deformations in the (c,c) ring $* symmetry Lecher, Vafa, Warner '89

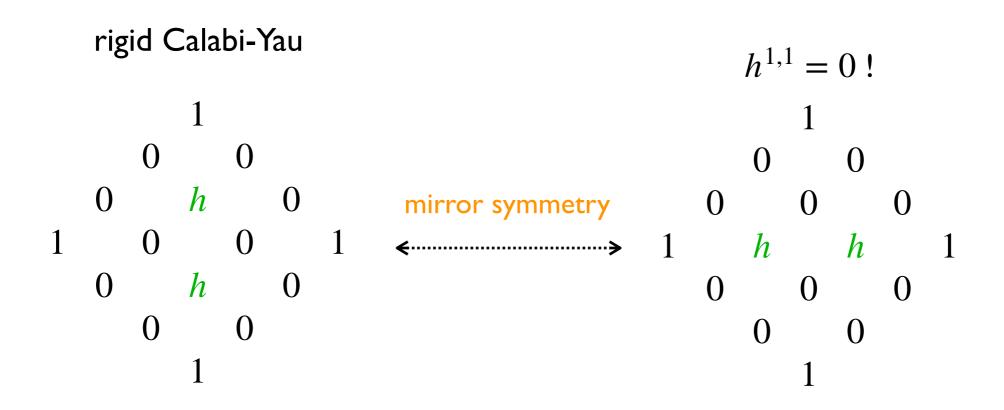
 $h^{1,1}$: marginal deformations in the (a,c) ring

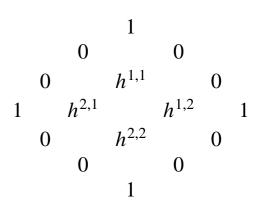
rigid Calabi-Yau

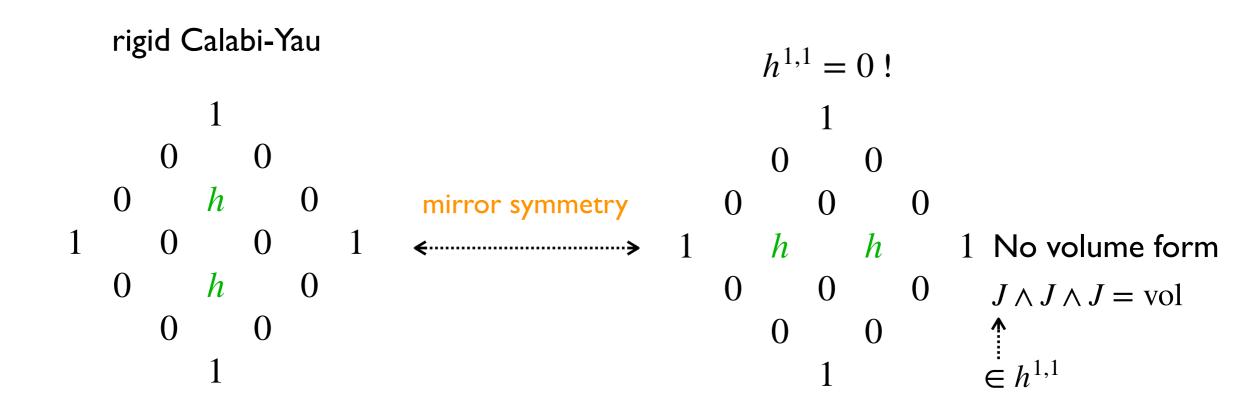


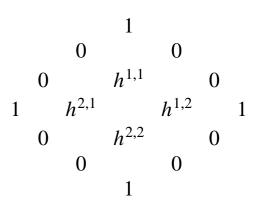


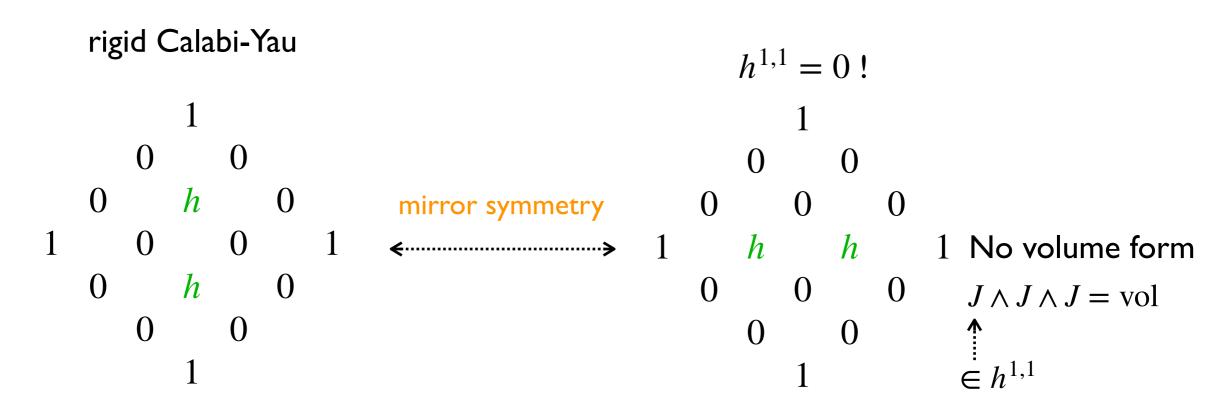




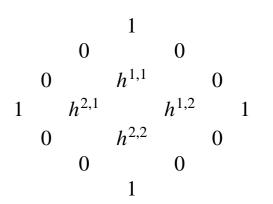


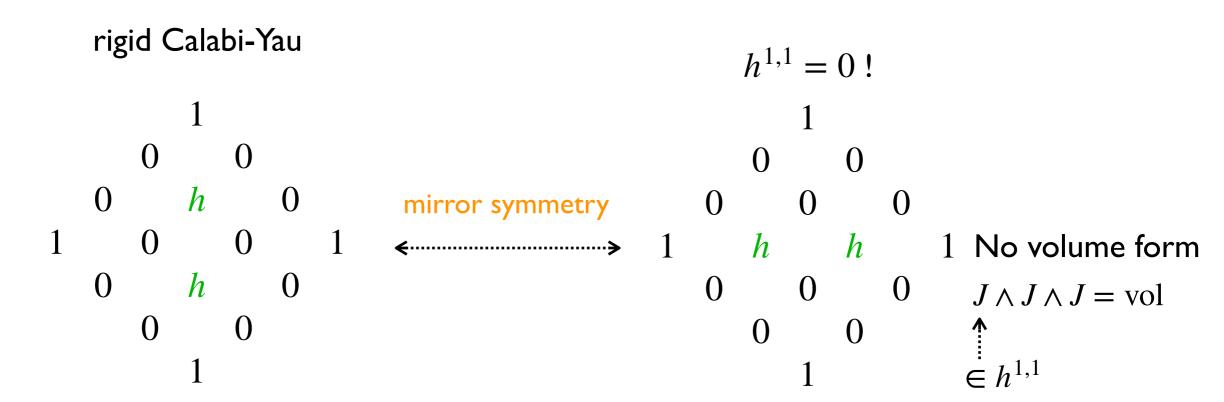






Not a manifold

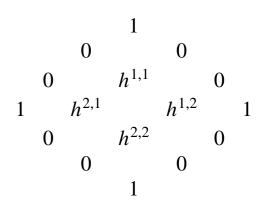


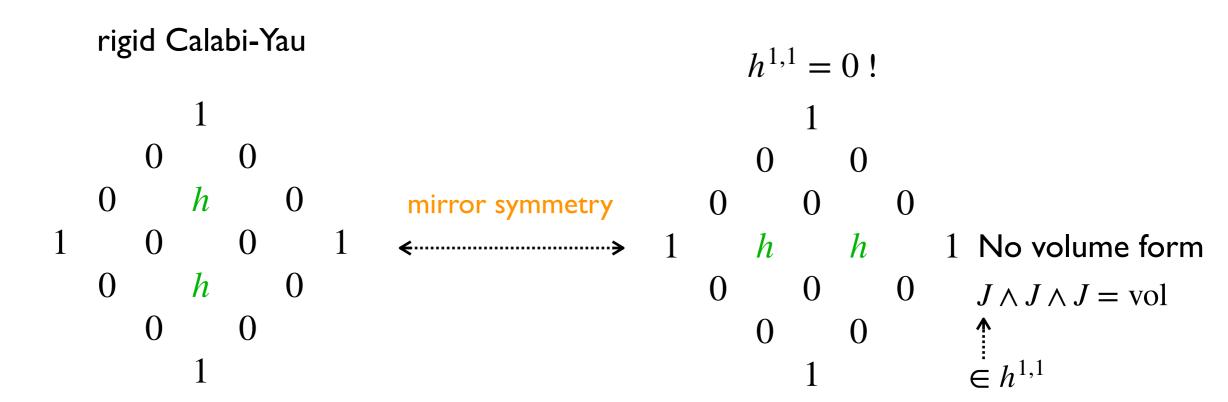


Not a manifold

But perfectly fine from the world-sheet point of view Description in terms of Landau-Ginzburg models

Vafa '89





Not a manifold

But perfectly fine from the world-sheet point of view

Description in terms of Landau-Ginzburg models

Vafa '89

Standard notions in geometric flux compactifications (flux superpotential, tadpole) still apply

IIB (geometric) flux Compactifications on Calabi-Yau orientifolds

 $M_{10} = M_4 \times \text{CY}_3$

$$M_{10} = M_4 \times \text{CY}_3$$

• $h^{2,1}$ complex structure moduli (volumes of 3-cycles) $\sim \mathcal{O}(100)$

$$M_{10} = M_4 \times \text{CY}_3$$

- $h^{2,1}$ complex structure moduli (volumes of 3-cycles) $\sim \mathcal{O}(100)$
- Add 3-form fluxes

$$\int_{\Gamma_n} F_3 = M^n \qquad \int_{\Gamma_n} H_3 = K^n \qquad m = 1, ..., 2h^{2,1} + 2$$

basis of 3-cycles

$$M_{10} = M_4 \times \text{CY}_3$$

• $h^{2,1}$ complex structure moduli (volumes of 3-cycles) $\sim \mathcal{O}(100)$

- Add 3-form fluxes

$$\int_{\Gamma_n} F_3 = M^n \qquad \int_{\Gamma_n} H_3 = K^n \qquad n = 1, ..., 2h^{2,1} + 2$$

basis of 3-cycles

- In the 4d EFT: potential for complex structure moduli (and dilaton)

$$G_3 = F_3 - \tau H_3$$

$$V = e^K \left(|D_I W|^2 - 3 |W|^2 \right)$$
 with
$$W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z)$$
 Gukov, Vafa, Witten 99

- In the 4d $\mathcal{N}=1$ EFT

$$V = e^K \left(|DW|^2 - 3|W|^2 \right) \qquad \text{with} \qquad W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$$

- In the 4d $\mathcal{N}=1$ EFT

$$V = e^K \left(|DW|^2 - 3|W|^2 \right) \qquad \text{with} \qquad W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$$

- SUSY minima at
 - $D_IW = 0 \rightarrow$ equation for complex structure moduli: get a vev depending on M^n, K^n

$$D_I W = \int_{CY} G_3 \wedge \chi_I \qquad \Rightarrow G^{(1,2)} = 0$$
(2,1) forms

- In the 4d $\mathcal{N}=1$ EFT

$$V = e^K \left(|DW|^2 - 3|W|^2 \right) \qquad \text{with} \qquad W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$$

- SUSY minima at
 - $D_IW = 0 \rightarrow$ equation for complex structure moduli: get a vev depending on M^n, K^n

$$D_I W = \int_{CY} G_3 \wedge \chi_I \qquad \Rightarrow G^{(1,2)} = 0$$
(2,1) forms

• $D_aW = \partial_aK W = 0 \rightarrow W_0 = 0$. No equation for Kähler moduli. Unfixed by fluxes

$$\Rightarrow G^{(0,3)} = 0$$

- In the 4d $\mathcal{N}=1$ EFT

$$V = e^K \left(|DW|^2 - 3|W|^2 \right) \qquad \text{with} \qquad W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$$

- SUSY minima at
 - $D_IW = 0 \rightarrow$ equation for complex structure moduli: get a vev depending on M^n, K^n

$$D_I W = \int_{CY} G_3 \wedge \chi_I \qquad \Rightarrow G^{(1,2)} = 0$$
(2,1) forms

• $D_aW = \partial_aK W = 0 \rightarrow W_0 = 0$. No equation for Kähler moduli. Unfixed by fluxes

$$\Rightarrow G^{(0,3)} = 0$$

- SUSY vacua are Minkowski

- In the 4d $\mathcal{N}=1$ EFT

$$V = e^K \left(|DW|^2 - 3|W|^2 \right) \qquad \text{with} \qquad W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$$

- SUSY minima at
 - $D_IW = 0 \rightarrow$ equation for complex structure moduli: get a vev depending on M^n, K^n

$$D_I W = \int_{CY} G_3 \wedge \chi_I \qquad \Rightarrow G^{(1,2)} = 0$$
(2,1) forms

• $D_aW = \partial_aK W = 0 \rightarrow W_0 = 0$. No equation for Kähler moduli. Unfixed by fluxes

$$\Rightarrow G^{(0,3)} = 0$$

- SUSY vacua are Minkowski
- Tadpole cancelation condition

$$N_{\rm flux} = \int F_3 \wedge H_3 = M^n K_n \leq |Q_{O3}|$$
 at minimum
$$H_3 = \star F_3 > 0$$
 (dilaton eq says $G^{(3,0)} = 0$)

• h^{2,1} complex structure moduli ((c,c) marginal deformations or RR ground states in CFT)

- Add 3-form fluxes

$$\int_{\Gamma_n} F_3 = M^n \qquad \int_{\Gamma_n} H_3 = K^n \qquad n = 1, ..., 2h^{2,1} + 2$$

basis of 3-cycles (susy cycles wrapped by A-branes ↔ bdy cond in the CFT)

- 4d $\mathcal{N} = 1$ EFT

$$V = e^K \Big(\, |D_I W|^2 - 3 \, |W|^2 \Big) \qquad \text{with} \qquad W = \int_{CY} G_3 \wedge \Omega \, \sim (M - \tau K) f(z)$$

- In the 4d
$$\mathcal{N} = 1$$
 EFT $V = e^K \left(|DW|^2 - 3|W|^2 \right)$ $W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$

- Minima at
 - $D_IW = 0 \rightarrow$ equation for complex structure moduli: get a vev depending on M^n, K^n

$$D_I W = \int_{CY} G_3 \wedge \chi_I \qquad \Rightarrow G^{(1,2)} = 0$$

- In the 4d
$$\mathcal{N} = 1$$
 EFT $V = e^K \left(|DW|^2 - 3|W|^2 \right)$ $W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$

- Minima at
 - $D_IW = 0 \rightarrow$ equation for complex structure moduli: get a vev depending on M^n, K^n

$$D_I W = \int_{CY} G_3 \wedge \chi_I \qquad \Rightarrow G^{(1,2)} = 0$$

• $D_aW = \partial_aKW = 0 \rightarrow W = 0$. No equation for Kähler moduli. Unfixed by fluxes if no Kähler moduli

$$\Rightarrow G^{(0,3)} = 0$$

- In the 4d
$$\mathcal{N} = 1$$
 EFT $V = e^K \left(|DW|^2 - 3|W|^2 \right)$ $W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$

- Minima at
 - $D_IW = 0 \rightarrow$ equation for complex structure moduli: get a vev depending on M^n, K^n

$$D_I W = \int_{CY} G_3 \wedge \chi_I \qquad \Rightarrow G^{(1,2)} = 0$$

- SUSY vacua are Minkowski ($W_0=0$) , or AdS ($W_0\neq 0$)

- In the 4d
$$\mathcal{N} = 1$$
 EFT $V = e^K \left(|DW|^2 - 3|W|^2 \right)$ $W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$

- Minima at
 - $D_IW = 0 \rightarrow$ equation for complex structure moduli: get a vev depending on M^n, K^n

$$D_I W = \int_{CY} G_3 \wedge \chi_I \qquad \Rightarrow G^{(1,2)} = 0$$

- SUSY vacua are Minkowski $(W_0=0)$, or AdS $(W_0\neq 0)$
 - Here restrict to **Minkowski** $(W_0 = 0)$.

- In the 4d
$$\mathcal{N} = 1$$
 EFT $V = e^K \left(|DW|^2 - 3|W|^2 \right)$ $W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$

- Minima at
 - $D_IW = 0 \rightarrow$ equation for complex structure moduli: get a vev depending on M^n, K^n

$$D_I W = \int_{CY} G_3 \wedge \chi_I \qquad \Rightarrow G^{(1,2)} = 0$$

- SUSY vacua are Minkowski ($W_0=0$) , or AdS ($W_0\neq 0$)
- Here restrict to **Minkowski** $(W_0=0)$. Adding $D_{\tau}W=0\Rightarrow G^{2,1}$ only

- In the 4d
$$\mathcal{N} = 1$$
 EFT $V = e^K \left(|DW|^2 - 3|W|^2 \right)$ $W = \int_{CY} G_3 \wedge \Omega \sim (M - \tau K) f(z^I)$

- Minima at
 - $D_IW = 0 \rightarrow$ equation for complex structure moduli: get a vev depending on M^n, K^n

$$D_I W = \int_{CY} G_3 \wedge \chi_I \qquad \Rightarrow G^{(1,2)} = 0$$

- $D_aW = \partial_aKW = 0 \rightarrow W = 0$. No equation for Kähler moduli. Unfixed by fluxes if no Kähler moduli $\longrightarrow G^{(0,3)} = 0$
- SUSY vacua are Minkowski ($W_0=0$) , or AdS ($W_0\neq 0$)
- Here restrict to **Minkowski** $(W_0=0)$. Adding $D_{\tau}W=0\Rightarrow G^{2,1}$ only
- Tadpole cancelation condition $N_{\rm flux} = \int\limits_{\rm at\ Mink\ minimum} F_3 \wedge H_3 = M^n K_n \leq |Q_{O3}|$ $H_3 = \star F_3 \qquad > 0$

$$S_{2d} = \int d^2z \, d^4\theta \, \mathcal{K}(\Phi_i, \bar{\Phi}_i) + \int d^2z \, d^2\theta \, \mathcal{W}(\Phi_i)$$
 world-sheet world-sheet superpotential
$$\mathcal{W}(\lambda^{\omega_i} \Phi_i) = \lambda^d \mathcal{W}(\Phi_i)$$

Landau Ginzburg models

- 2d $\mathcal{N}=(2,2)$ theories of r chiral fields Φ_i , i=1,...,r

$$S_{2d} = \int d^2z \, d^4\theta \, \mathcal{K}(\Phi_i, \bar{\Phi}_i) + \int d^2z \, d^2\theta \, \mathcal{W}(\Phi_i)$$
 world-sheet superpotential
$$\mathcal{W}(\lambda^{\omega_i} \Phi_i) = \lambda^d \mathcal{W}(\Phi_i)$$

- For any such \mathcal{W} , there is a \mathcal{K} such that IR fixed point is a compact SCFT

(model is completely determined by W)

Landau Ginzburg models

- 2d $\mathcal{N}=(2,2)$ theories of r chiral fields Φ_i , i=1,...,r

$$S_{2d} = \int d^2z \, d^4\theta \, \mathcal{K}(\Phi_i, \bar{\Phi}_i) + \int d^2z \, d^2\theta \, \mathcal{W}(\Phi_i)$$
 world-sheet superpotential
$$\mathcal{W}(\lambda^{\omega_i} \Phi_i) = \lambda^d \mathcal{W}(\Phi_i)$$

- For any such \mathcal{W} , there is a \mathcal{K} such that IR fixed point is a compact SCFT

(model is completely determined by \mathcal{W})

- If $\mathscr{W} = \sum_i \Phi_i^{k_i+2}$: CFT is a prod. of r minimal models at levels $k_i \Rightarrow c = \sum_i \frac{3k_i}{k_i+2}$

$$S_{2d} = \int \! d^2z \, d^4\theta \, \mathcal{K}(\Phi_i, \bar{\Phi}_i) + \int \! d^2z \, d^2\theta \, \mathcal{W}(\Phi_i)$$
 world-sheet world-sheet superpotential
$$\mathcal{W}(\lambda^{\omega_i} \Phi_i) = \lambda^d \mathcal{W}(\Phi_i)$$

- For any such \mathcal{W} , there is a \mathcal{K} such that IR fixed point is a compact SCFT

(model is completely determined by \mathcal{W})

- If $\mathscr{W} = \sum_i \Phi_i^{k_i+2}$: CFT is a prod. of r minimal models at levels $k_i \Rightarrow c = \sum_i \frac{3k_i}{k_i+2}$
- When c = 9: good for string "compactifications"

$$S_{2d} = \int d^2z \, d^4\theta \, \mathcal{K}(\Phi_i, \bar{\Phi}_i) + \int d^2z \, d^2\theta \, \mathcal{W}(\Phi_i)$$
 world-sheet superpotential
$$\mathcal{W}(\lambda^{\omega_i} \Phi_i) = \lambda^d \mathcal{W}(\Phi_i)$$

- For any such \mathcal{W} , there is a \mathcal{K} such that IR fixed point is a compact SCFT

(model is completely determined by \mathcal{W})

- If $\mathcal{W} = \sum_i \Phi_i^{k_i+2}$: CFT is a prod. of r minimal models at levels $k_i \Rightarrow c = \sum_i \frac{3k_i}{k_i+2}$
- When c = 9: good for string "compactifications"
- Also need to require $U(1)_R$ charges $q_{NS}\in\mathbb{Z},\ q_R\in\mathbb{Z}+\frac{1}{2}\Rightarrow$ need to orbifold

E.g.
$$k_1 = k_2 = \dots k_r = k$$
 $g(\Phi_i) = e^{i\omega}\Phi_i$ $\omega = 2\pi/(k+2)$

$$S_{2d} = \int d^2z \, d^4\theta \, \mathcal{K}(\Phi_i, \bar{\Phi}_i) + \int d^2z \, d^2\theta \, \mathcal{W}(\Phi_i)$$
 world-sheet superpotential
$$\mathcal{W}(\lambda^{\omega_i} \Phi_i) = \lambda^d \mathcal{W}(\Phi_i)$$

- For any such \mathcal{W} , there is a \mathcal{K} such that IR fixed point is a compact SCFT

(model is completely determined by W)

- If $\mathcal{W} = \sum_i \Phi_i^{k_i+2}$: CFT is a prod. of r minimal models at levels $k_i \Rightarrow c = \sum_i \frac{3k_i}{k_i+2}$
- When c = 9: good for string "compactifications"
- Also need to require $U(1)_R$ charges $q_{NS}\in\mathbb{Z},\ q_R\in\mathbb{Z}+\frac{1}{2}\Rightarrow$ need to orbifold

E.g.
$$k_1 = k_2 = \dots k_r = k$$
 $g(\Phi_i) = e^{i\omega}\Phi_i$ $\omega = 2\pi/(k+2)$

$$\begin{split} S_{2d} &= \int\! d^2z\, d^4\theta\, \mathcal{K}(\Phi_i,\bar{\Phi}_i) + \int\! d^2z\, d^2\theta\, \mathcal{W}(\Phi_i) \\ & \text{world-sheet} \\ & \text{K\"{a}hler potential} \end{split} \qquad \text{world-sheet} \\ & \text{superpotential} \qquad \mathcal{W}(\lambda^{\omega_i}\Phi_i) = \lambda^d \mathcal{W}(\Phi_i) \end{split}$$

- For any such \mathcal{W} , there is a \mathcal{K} such that IR fixed point is a compact SCFT

(model is completely determined by W)

- If $\mathcal{W} = \sum_{i} \Phi_{i}^{k_{i}+2}$: CFT is a prod. of r minimal models at levels $k_{i} \Rightarrow c = \sum_{i} \frac{3k_{i}}{k_{i}+2}$
- When c = 9: good for string "compactifications"
- Also need to require $U(1)_R$ charges $q_{NS} \in \mathbb{Z}$, $q_R \in \mathbb{Z} + \frac{1}{2} \Rightarrow$ need to orbifold

E.g.
$$k_1 = k_2 = \dots k_r = k$$
 $g(\Phi_i) = e^{i\omega}\Phi_i$ $\omega = 2\pi/(k+2)$ Model $\equiv k^r$

- 2d $\mathcal{N}=(2,2)$ theories of r chiral fields Φ_i , i=1,...,r

$$\begin{split} S_{2d} &= \int\! d^2z\, d^4\theta\, \mathcal{K}(\Phi_i,\bar{\Phi}_i) + \int\! d^2z\, d^2\theta\, \mathcal{W}(\Phi_i) \\ & \text{world-sheet} \\ & \text{K\"{a}hler potential} \end{split} \qquad \text{world-sheet} \\ & \text{superpotential} \qquad \mathcal{W}(\lambda^{\omega_i}\Phi_i) = \lambda^d \mathcal{W}(\Phi_i) \end{split}$$

- For any such \mathcal{W} , there is a \mathcal{K} such that IR fixed point is a compact SCFT

(model is completely determined by W)

- If $\mathcal{W} = \sum_i \Phi_i^{k_i+2}$: CFT is a prod. of r minimal models at levels $k_i \Rightarrow c = \sum_i \frac{3k_i}{k_i+2}$
- When c = 9: good for string "compactifications"
- Also need to require $U(1)_R$ charges $q_{NS} \in \mathbb{Z}$, $q_R \in \mathbb{Z} + \frac{1}{2} \Rightarrow$ need to orbifold

E.g.
$$k_1 = k_2 = \dots k_r = k$$
 $g(\Phi_i) = e^{i\omega}\Phi_i$ $\omega = 2\pi/(k+2)$ Model $\equiv k^r$

- Lead to 4-dimensional $\mathcal{N}=2$ string vacua (as CY)

- Can orientifold; quotient by $\Omega \, \sigma$. $\, \mathscr{W}(\sigma(\Phi)) = - \, \mathscr{W}(\Phi) \,$

E.g. in
$$k^r$$
 model ($\mathscr{W}=\sum_{i=1}^r\Phi_i^{k+2}$) can take $\sigma(\Phi_i)=e^{i\pi/(k+2)}\Phi_i$

- Can orientifold; quotient by $\Omega \sigma$. $\mathcal{W}(\sigma(\Phi)) = -\mathcal{W}(\Phi)$

E.g. in
$$k^r$$
 model $(\mathcal{W} = \sum_{i=1}^r \Phi_i^{k+2})$ can take $\sigma(\Phi_i) = e^{i\pi/(k+2)}\Phi_i$

Two particularly interesting k^r models with c=9

 $1^9 2^6$

- Can orientifold; quotient by $\Omega \sigma$. $\mathcal{W}(\sigma(\Phi)) = -\mathcal{W}(\Phi)$

E.g. in
$$k^r$$
 model $(\mathcal{W} = \sum_{i=1}^r \Phi_i^{k+2})$ can take $\sigma(\Phi_i) = e^{i\pi/(k+2)}\Phi_i$

Two particularly interesting k^r models with c = 9 $h^{1,1} = 0$

- Can orientifold; quotient by $\Omega \sigma$. $\mathcal{W}(\sigma(\Phi)) = -\mathcal{W}(\Phi)$

E.g. in
$$k^r$$
 model $(\mathcal{W} = \sum_{i=1}^r \Phi_i^{k+2})$ can take $\sigma(\Phi_i) = e^{i\pi/(k+2)}\Phi_i$

Two particularly interesting k^r models with c = 9 $h^{1,1} = 0$

With
$$\sigma(\Phi_1, ..., \Phi_9) = -(\Phi_2, \Phi_1, \Phi_3, ..., \Phi_9)$$
 $\sigma(\Phi_1, ..., \Phi_6) = ie^{i\pi/4}(\Phi_1, ..., \Phi_6)$

- Can orientifold; quotient by $\Omega \sigma$. $\mathcal{W}(\sigma(\Phi)) = -\mathcal{W}(\Phi)$

E.g. in
$$k^r$$
 model $(\mathcal{W} = \sum_{i=1}^r \Phi_i^{k+2})$ can take $\sigma(\Phi_i) = e^{i\pi/(k+2)}\Phi_i$

Two particularly interesting k^r models with c = 9 $h^{1,1} = 0$

With
$$\sigma(\Phi_1,\ldots,\Phi_9)=-(\Phi_2,\Phi_1,\Phi_3,\ldots,\Phi_9)$$
 $\sigma(\Phi_1,\ldots,\Phi_6)=ie^{i\pi/4}(\Phi_1,\ldots,\Phi_6)$ $|Q_{O3}|=12$ $|Q_{O3}|=40$ mirror of $\frac{T^6}{\mathbb{Z}_3\times\mathbb{Z}_3}$

Katrin Becker^a, Melanie Becker^a, Cumrun Vafa^b, and Johannes Walcher^c

Abstract

Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kähler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as Anti-de-Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background.

Moduli stabilisation in these Landau Ginzburg models

Becker, Becker, Vafa, Walcher 06

Moduli Stabilization in Non-Geometric Backgrounds

Katrin Becker^a, Melanie Becker^a, Cumrun Vafa^b, and Johannes Walcher^c

Abstract

Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kähler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as Anti-de-Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background.

Katrin Becker^a, Melanie Becker^a, Cumrun Vafa^b, and Johannes Walcher^c

Abstract

Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kähler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as Anti-de-Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background.

Katrin Becker^a, Melanie Becker^a, Cumrun Vafa^b, and Johannes Walcher^c

Abstract

Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kähler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as Anti-de-Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background.

If
$$N_{\text{flux}} > \frac{1}{3} n_{\text{stab}} \Rightarrow \text{to fix all moduli need} \longrightarrow 1^9 : N_{\text{flux}} > \frac{1}{3} 63 = 21$$

Katrin Becker^a, Melanie Becker^a, Cumrun Vafa^b, and Johannes Walcher^c

Abstract

Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kähler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as Anti-de-Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background.

If
$$N_{\text{flux}} > \frac{1}{3} n_{\text{stab}} \Rightarrow \text{to fix all moduli need}$$
 $\longrightarrow 1^9 : N_{\text{flux}} > \frac{1}{3} 63 = 21$ but $|Q_{O3}| = 12!$

Katrin Becker^a, Melanie Becker^a, Cumrun Vafa^b, and Johannes Walcher^c

Abstract

Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kähler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as Anti-de-Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background.

If
$$N_{\text{flux}} > \frac{1}{3} n_{\text{stab}} \Rightarrow \text{to fix all moduli need}$$
 $\longrightarrow 1^9 : N_{\text{flux}} > \frac{1}{3} 63 = 21 \text{ but } |Q_{O3}| = 12!$ $\longrightarrow 2^6 : N_{\text{flux}} > \frac{1}{3} 90 = 30$ $|Q_{O3}| = 40$

arXiv:hep-th/0611001v2 20 Nov 2006

Moduli Stabilization in Non-Geometric Backgrounds

Katrin Becker^a, Melanie Becker^a, Cumrun Vafa^b, and Johannes Walcher^c

Abstract

Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kähler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as Anti-de-Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background.

If
$$N_{\text{flux}} > \frac{1}{3} n_{\text{stab}} \Rightarrow \text{to fix all moduli need}$$

$$\longrightarrow$$
 1⁹: $N_{\text{flux}} > \frac{1}{3}63 = 21$ but $|Q_{O3}| = 12!$

$$\longrightarrow 2^6: N_{\text{flux}} > \frac{1}{3}90 = 30 \qquad |Q_{O3}| = 40$$

Moduli

- Moduli: Deformations of $\mathcal{W}(% \mathbb{R}^{3})$ for concreteness all that follows for 2^{6})

$$\mathcal{W} = \sum_{i=1}^{6} \Phi_i^4 + \sum_{L=1}^{6} t^L \Phi^{L-1} \qquad \Phi^{L-1} \equiv \Phi_1^{l_1-1} \Phi_2^{l_2-1} \dots \Phi_6^{l_r-1} \qquad L = (l_1, \dots, l_6)$$

$$l_i = 1, 2, 3$$

- Moduli: Deformations of \mathcal{W} (for concreteness all that follows for 2^6)

$$\mathcal{W} = \sum_{i=1}^{6} \Phi_i^4 + \sum_{L=1}^{6} t^L \Phi^{L-1} \qquad \Phi_1^{L-1} \equiv \Phi_1^{l_1-1} \Phi_2^{l_2-1} \dots \Phi_6^{l_r-1} \qquad L = (l_1, \dots, l_6)$$

$$l_i = 1, 2, 3$$

- Marginal deformations $\sum (l_i - 1) = 4$

- Moduli: Deformations of \mathcal{W} (for concreteness all that follows for 2^6)

$$\mathcal{W} = \sum_{i=1}^{6} \Phi_i^4 + \sum_{L=1}^{6} t^L \Phi^{L-1} \qquad \Phi_1^{L-1} \equiv \Phi_1^{l_1-1} \Phi_2^{l_2-1} \dots \Phi_6^{l_r-1} \qquad L = (l_1, \dots, l_6)$$

$$l_i = 1, 2, 3$$

- Marginal deformations $\sum (l_i 1) = 4$
- Look for stabilisation at **Fermat point** t = 0

- Moduli: Deformations of $\mathcal{W}($ for concreteness all that follows for 2^6)

$$\mathcal{W} = \sum_{i=1}^{6} \Phi_i^4 + \sum_{L=1}^{6} t^L \Phi^{L-1} \qquad \Phi^{L-1} \equiv \Phi_1^{l_1-1} \Phi_2^{l_2-1} \dots \Phi_6^{l_r-1} \qquad L = (l_1, \dots, l_6)$$

$$l_i = 1, 2, 3$$

- Marginal deformations $\sum (l_i 1) = 4$
- Look for stabilisation at **Fermat point** t = 0

$\sum l_i$	6	10	14	18
(p,q)	(3,0)	(2,1)	(1,2)	(0,3)

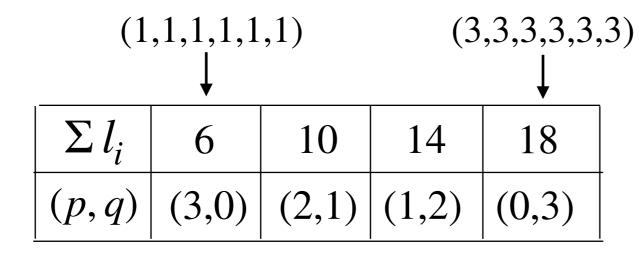
L: complex forms

- Moduli: Deformations of \mathcal{W} (for concreteness all that follows for 2^6)

$$\mathcal{W} = \sum_{i=1}^{6} \Phi_i^4 + \sum_{L=1}^{6} t^L \Phi^{L-1} \qquad \Phi^{L-1} \equiv \Phi_1^{l_1-1} \Phi_2^{l_2-1} \dots \Phi_6^{l_r-1} \qquad L = (l_1, \dots, l_6)$$

$$l_i = 1, 2, 3$$

- Marginal deformations $\sum (l_i 1) = 4$
- Look for stabilisation at **Fermat point** t = 0



L: complex forms

- Fluxes
$$\in \mathbb{Z}$$
 $L=(l_1,\ldots,l_6)$ $l_i=1,2,3$ L : complex forms
$$\int_{\Gamma_N} F_3 = M^N \int_{\Gamma_N} H_3 = K^N \qquad N=(n_1,\ldots,n_6) \ n_i=0,1,2,3 \qquad N$$
: real cycles / forms

$$L = (l_1, \dots, l_6)$$
 $l_i = 1,2,3$

$$N = (n_1, \dots, n_6) \ n_i = 0,1,2,3$$

(not all independent)

- Fluxes
$$\in \mathbb{Z}$$
 $L=(l_1,\ldots,l_6)$ $l_i=1,2,3$ L : complex forms
$$\int_{\Gamma_N} F_3 = M^N \int_{\Gamma_N} H_3 = K^N \qquad N=(n_1,\ldots,n_6) \ n_i=0,1,2,3 \qquad N$$
: real cycles / forms (not all independent)

- Moduli stabilisation

$$W = \int G_3 \wedge \Omega = \sum_N (M^N - \tau K^N) \Omega_N, \qquad \Omega_N = \int_{\Gamma_N} e^{-W(\Phi,t)} d^4\Phi \sim \sum_p t_1 \dots t_p i^{(L_1 + \dots + L_p) \cdot N}$$

- Massive moduli

- Massive moduli

$$\sum l_i = 10 \Rightarrow I$$

$$n_{\rm mass} = {\rm rank}\,M$$

$$\Sigma l_i = 10 \implies I$$

$$\Sigma l_i = 14 \implies \overline{I}$$

$$M = DD W = \begin{pmatrix} D_I D_J W & D_I D_{\bar{J}} \bar{W} \\ D_{\bar{I}} D_J W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix}$$

- Massive moduli

$$\Sigma l_i = 10 \Rightarrow I$$

$$n_{\text{mass}} = \operatorname{rank} M$$

$$\Sigma l_i = 14 \Rightarrow \bar{I}$$

$$M = DDW = \begin{pmatrix} D_I D_J W & D_I D_{\bar{J}} \bar{W} \\ D_{\bar{I}} D_J W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix} \Big|_{DW=0} = \begin{pmatrix} D_I D_J W & g_{I\bar{J}} \bar{W} \\ g_{\bar{I}J} W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix} \Big|_{DW=0, W_0=0} = \begin{pmatrix} \partial_I \partial_J W & 0 \\ 0 & \partial_{\bar{I}} \partial_{\bar{J}} \bar{W} \end{pmatrix}$$

here

- Massive moduli

$$\Sigma l_i = 10 \Rightarrow I$$

$$n_{\text{mass}} = \operatorname{rank} M$$

$$\Sigma l_i = 14 \Rightarrow \bar{I}$$

$$M = DDW = \begin{pmatrix} D_I D_J W & D_I D_{\bar{J}} \bar{W} \\ D_{\bar{I}} D_J W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix} \Big|_{DW=0} = \begin{pmatrix} D_I D_J W & g_{I\bar{J}} \bar{W} \\ g_{\bar{I}J} W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix} \Big|_{DW=0, W_0=0} = \begin{pmatrix} \partial_I \partial_J W & 0 \\ 0 & \partial_{\bar{I}} \partial_{\bar{J}} \bar{W} \end{pmatrix}$$

here

$$n_{\mathrm{mass}} = \mathrm{rank} \, (\partial_I \partial_J W)$$
 Independent of the Kähler potential

- Massive moduli

$$\Sigma l_i = 10 \Rightarrow I$$

$$n_{\rm mass} = {\rm rank}\,M$$

$$\Sigma l_i = 14 \Rightarrow \overline{I}$$

$$M = DDW = \begin{pmatrix} D_I D_J W & D_I D_{\bar{J}} \bar{W} \\ D_{\bar{I}} D_J W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix} \Big|_{DW=0} = \begin{pmatrix} D_I D_J W & g_{I\bar{J}} \bar{W} \\ g_{\bar{I}J} W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix} \Big|_{DW=0, W_0=0} = \begin{pmatrix} \partial_I \partial_J W & 0 \\ 0 & \partial_{\bar{I}} \partial_{\bar{J}} \bar{W} \end{pmatrix}$$

here

$$n_{\mathrm{mass}} = \mathrm{rank} \, (\partial_I \partial_J W)$$
 Independent of the Kähler potential

- Note!

$$n_{\text{mass}} \le n_{\text{stab}} < 3 N_{\text{flux}}$$

- Massive moduli

$$\sum l_i = 10 \implies I$$

$$n_{\text{mass}} = \operatorname{rank} M$$

$$\Sigma l_i = 14 \Rightarrow \bar{I}$$

$$M = DDW = \begin{pmatrix} D_I D_J W & D_I D_{\bar{J}} \bar{W} \\ D_{\bar{I}} D_J W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix} \Big|_{DW=0} = \begin{pmatrix} D_I D_J W & g_{I\bar{J}} \bar{W} \\ g_{\bar{I}J} W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix} \Big|_{DW=0, W_0=0} = \begin{pmatrix} \partial_I \partial_J W & 0 \\ 0 & \partial_{\bar{I}} \partial_{\bar{J}} \bar{W} \end{pmatrix}$$

here

$$n_{\mathrm{mass}} = \mathrm{rank} \, (\partial_I \partial_J W)$$
 Independent of the Kähler potential

- Note!

$$n_{\rm mass} \le n_{\rm stab} < 3 N_{\rm flux}$$

tadpole conjecture

- Here testing a weaker form of tadpole conjecture

Two alternative procedures

- Turn on G_3 on one, two, three,... L^I component ($\Sigma \, l_i = 10$)
 - $\rightarrow \in H^{(2,1)}$ automatic
 - $\longrightarrow M^N, K^N \in \mathbb{Z}$ to be imposed
- Turn on F_3 , H_3 on one, two, three,... Γ_N component
 - $\longrightarrow M^N, K^N \in \mathbb{Z}$ automatic
 - $\longrightarrow G_3 \in H^{(2,1)}$ to be imposed

Two alternative procedures

- Turn on G_3 on one, two, three,... L^I component ($\Sigma l_i = 10$)
 - $\rightarrow \in H^{(2,1)}$ automatic
 - $\longrightarrow M^N, K^N \in \mathbb{Z}$ to be imposed
- Turn on F_3 , H_3 on one, two, three,... Γ_N component
 - $\longrightarrow M^N, K^N \in \mathbb{Z}$ automatic
 - $\longrightarrow G_3 \in H^{(2,1)}$ to be imposed
 - Can be done exhaustively (using S_6 permutations) up to ~ 8 components
 - Beyond: use algorithms for smart search

Two alternative procedures

- Turn on G_3 on one, two, three,... L^I component ($\Sigma l_i = 10$)
 - $\rightarrow \in H^{(2,1)}$ automatic
 - $\longrightarrow M^N, K^N \in \mathbb{Z}$ to be imposed
- Turn on F_3 , H_3 on one, two, three,... Γ_N component
 - $\longrightarrow M^N, K^N \in \mathbb{Z}$ automatic
 - $\longrightarrow G_3 \in H^{(2,1)}$ to be imposed
 - Can be done exhaustively (using S_6 permutations) up to ~ 8 components
 - Beyond: use algorithms for smart search (start from a set of minimal length vectors)
 - Compute N_{flux} , n_{mass}

$$N_{\text{flux}} = \int F_3 \wedge H_3 = M^N K_N$$

$$N_{\text{flux}} = \frac{i}{\tau - \bar{\tau}} \int G_3 \wedge \bar{G}_3 = \frac{1}{2\tau_2} |G_I|^2$$

$$n_{\text{mass}} = \text{rank} (\partial_I \partial_J W)$$

Results: 1⁹

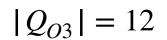
$$|Q_{O3}| = 12$$

$$h^{2,1} = 63$$

$$\tau = e^{2\pi i/3}$$

Not weak coupling!

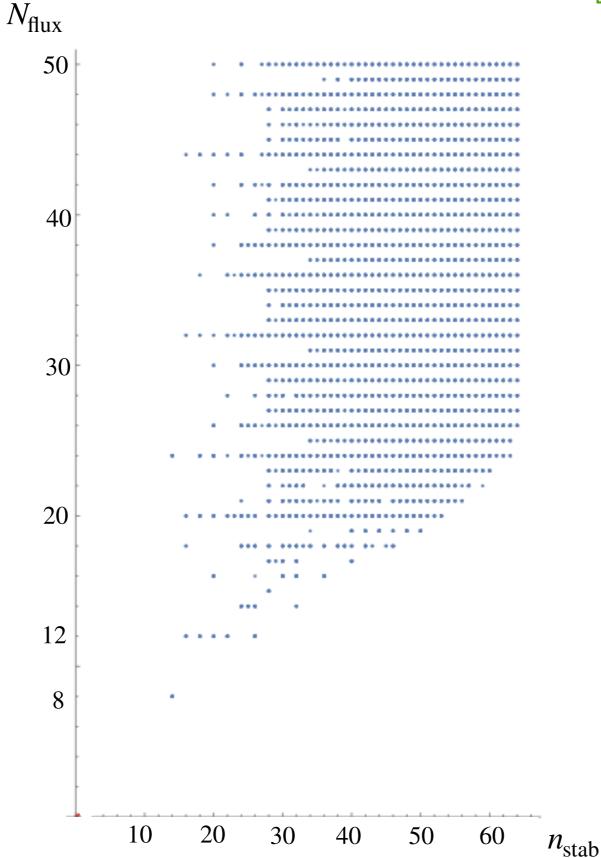
Becker, Gonazlo, Walcher, Wrase '22 Becker, Brady, Sengupta '23 Becker, Rajagaru, Sengupta, Walcher, Wrase '24



$$h^{2,1} = 63$$

$$\tau = e^{2\pi i/3}$$

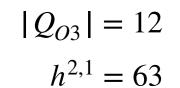
Not weak coupling!



here: stabilized at quadratic order see Rajagaru's talk for higher orders

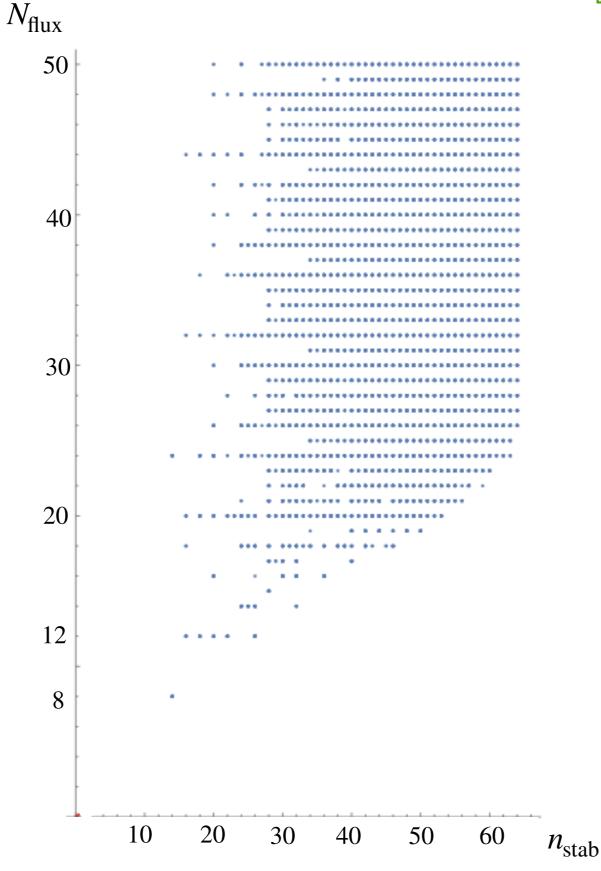
Becker, Brady, Sengupta '23

Becker, Rajagaru, Sengupta, Walcher, Wrase '24



$$\tau = e^{2\pi i/3}$$

Not weak coupling!



Tadpole conjecture

$$N_{\rm flux} > \alpha n_{\rm stab}$$

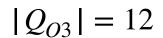
here: stabilized at quadratic order

see Rajagaru's talk for higher orders

Becker, Gonazlo, Walcher, Wrase '22

Becker, Brady, Sengupta '23

Becker, Rajagaru, Sengupta, Walcher, Wrase '24



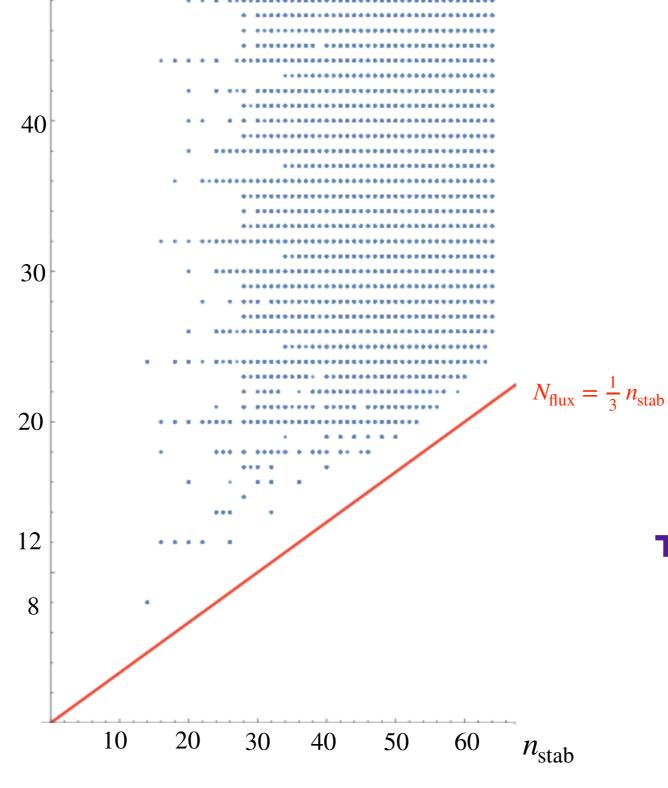
$$h^{2,1} = 63$$

 $N_{\rm flux}$

50

$$\tau = e^{2\pi i/3}$$

Not weak coupling!



Tadpole conjecture

$$N_{\text{flux}} > \frac{1}{3} n_{\text{stab}}$$

here: stabilized at quadratic order see Rajagaru's talk for higher orders

Results: 2⁶

$$|Q_{O3}| = 40 h^{2,1} = 90 \tau = i$$

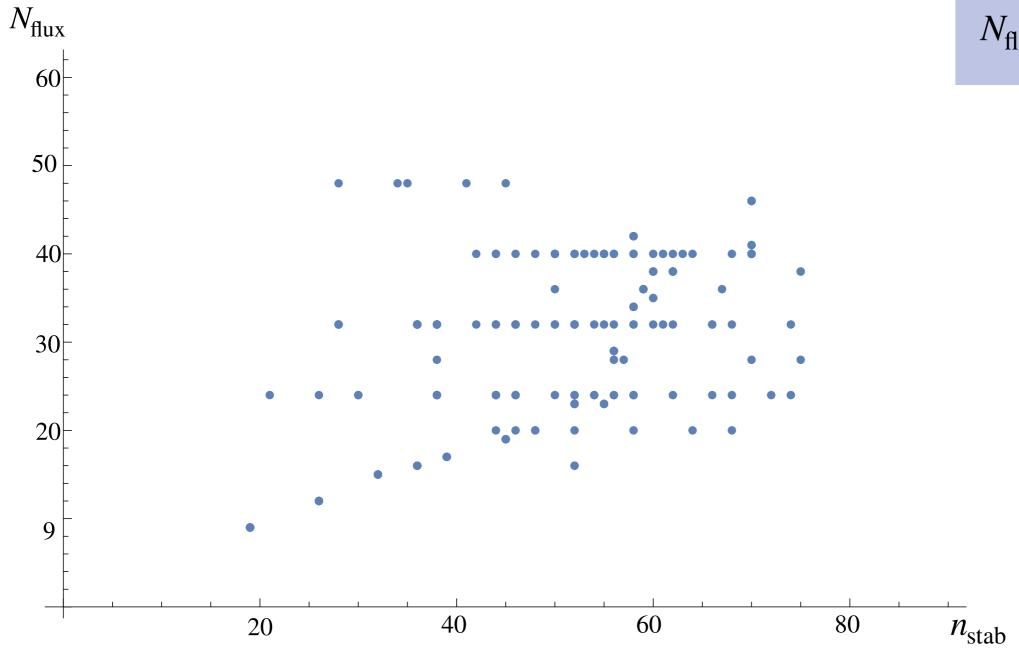
Becker, Brady, MG, Morros, Sengupta, You

$$N_{\text{flux}} > \frac{1}{3} n_{\text{stab}}$$

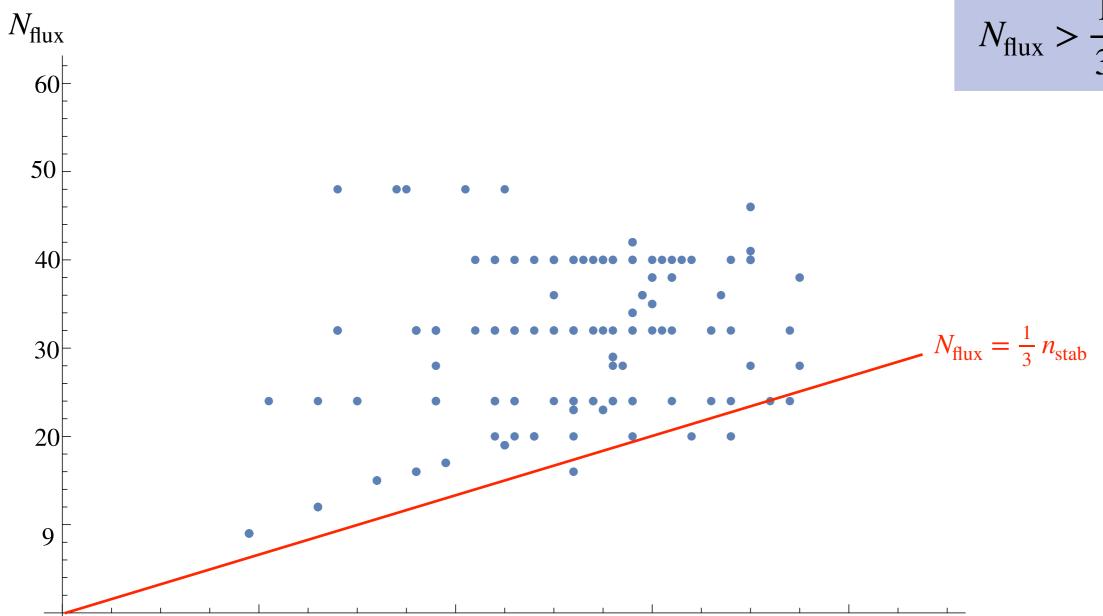
Results: 2⁶

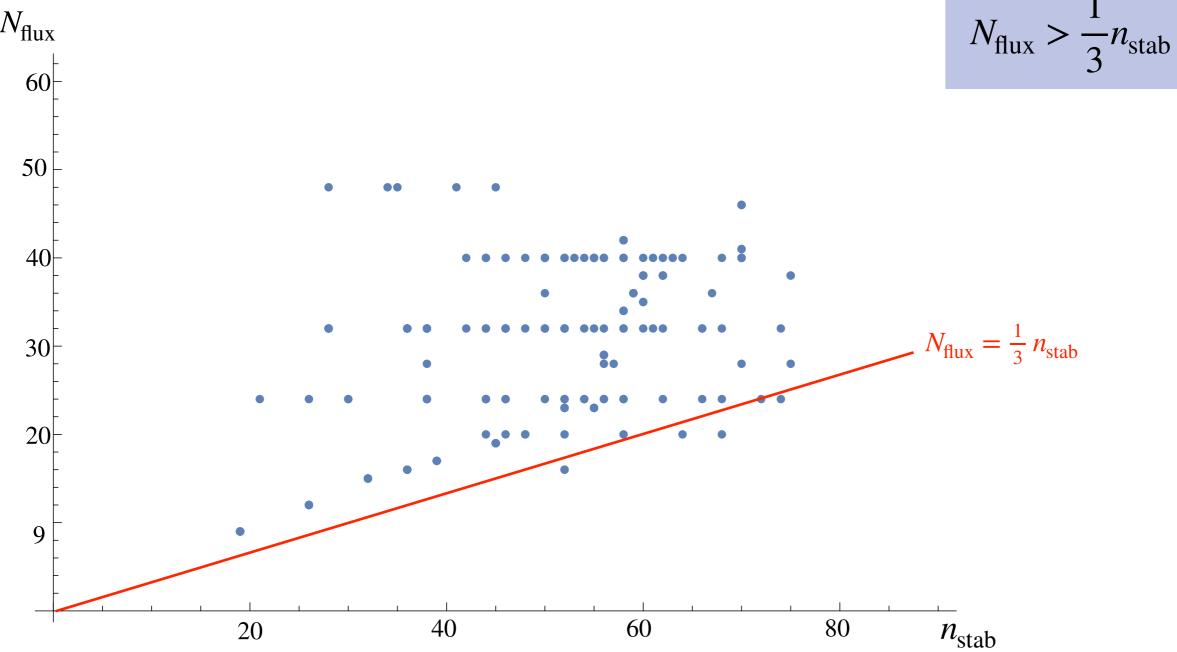
$$|Q_{O3}| = 40 h^{2,1} = 90 \tau = i$$

$$N_{\text{flux}} > \frac{1}{3} n_{\text{stab}}$$



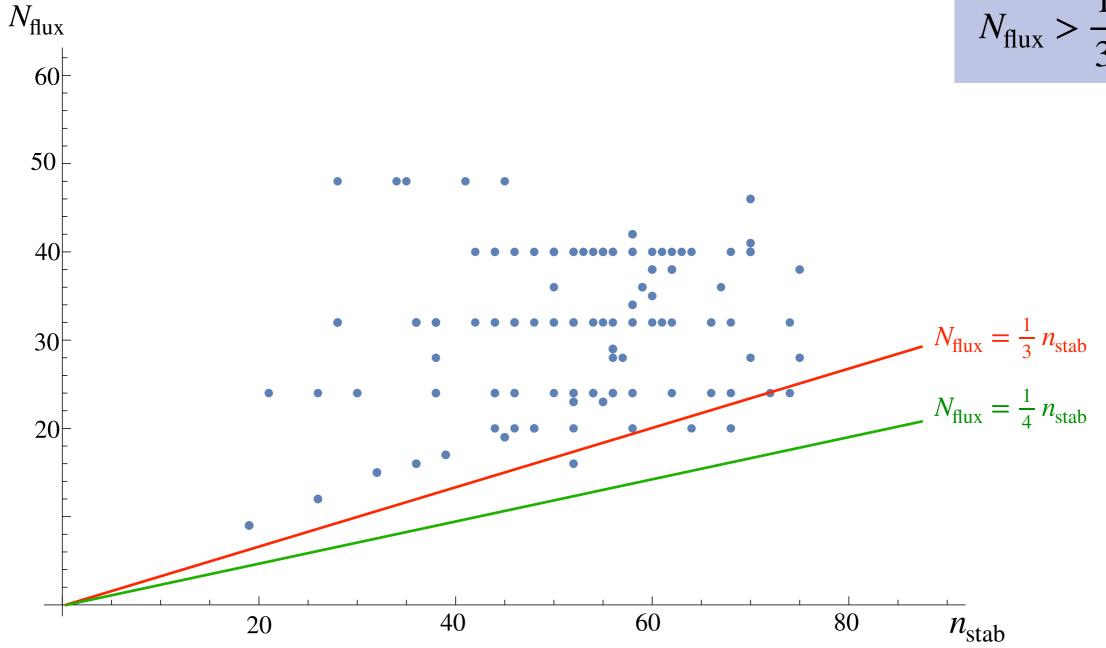
$$|Q_{O3}| = 40 h^{2,1} = 90 \tau = i$$





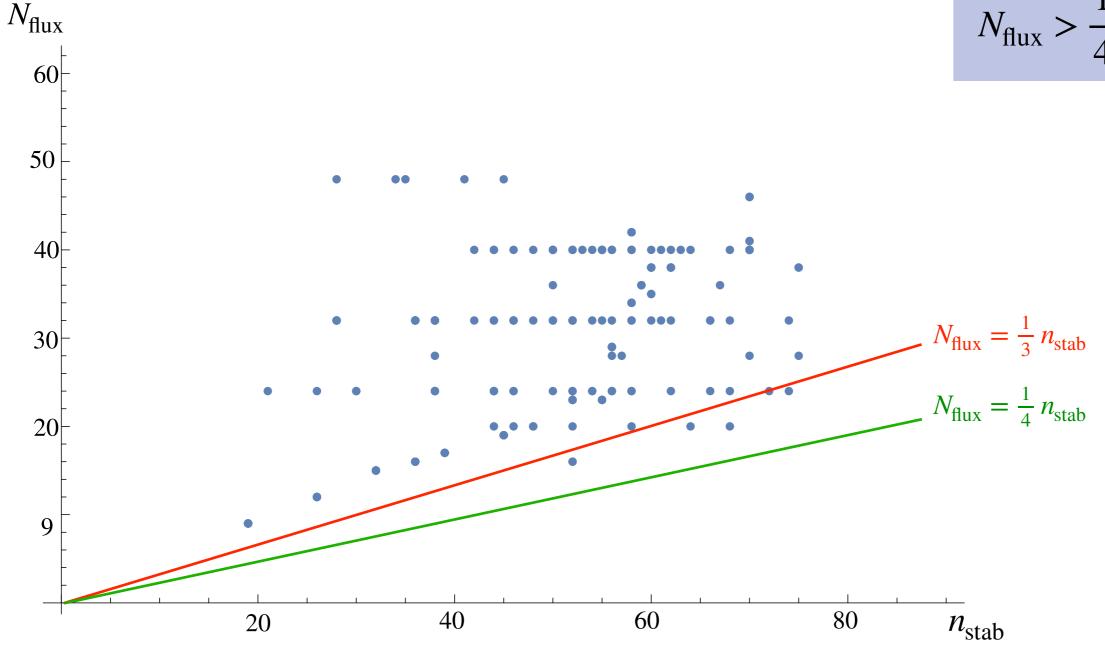
$$|Q_{O3}| = 40 h^{2,1} = 90 \tau = i$$

$$N_{\text{flux}} > \frac{1}{3} n_{\text{stab}}$$



$$|Q_{03}| = 40 h^{2,1} = 90 \tau = i$$

$$N_{\text{flux}} > \frac{1}{4} n_{\text{stab}}$$



In F-theory tadpole cond:
$$N_{\rm flux} \le \frac{\chi}{24} \simeq \frac{1}{4} n_{\rm mod}$$

- Tadpole conjecture impressively verified.
 - -Linear behavior (even beyond tadpole bound)
 - -Coefficient $\alpha > \frac{1}{4}$ (vs original value $\frac{1}{3}$)

$$N_{\rm flux} > \alpha n_{\rm stab}$$

- Tadpole conjecture impressively verified.
 - -Linear behavior (even beyond tadpole bound)
 - -Coefficient $\alpha > \frac{1}{4}$ (vs original value $\frac{1}{3}$)

$$N_{\text{flux}} > \frac{1}{4} n_{\text{stab}}$$

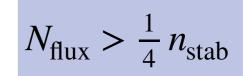
- Tadpole conjecture impressively verified.
 - -Linear behavior (even beyond tadpole bound)

-Coefficient
$$\alpha > \frac{1}{4}$$
 (vs original value $\frac{1}{3}$)

$$N_{\text{flux}} > \frac{1}{4} n_{\text{stab}}$$

Clarified many questions

• Tadpole conjecture impressively verified.



- -Linear behavior (even beyond tadpole bound)
- -Coefficient $\alpha > \frac{1}{4}$ (vs original value $\frac{1}{3}$)
- Clarified many questions
- Is it only valid for stabilisation of all moduli as originally stated? No, more general than that, valid for $10 \lesssim n_{\rm stab} \leq n_{\rm mod}$

• Tadpole conjecture impressively verified.

- $N_{\text{flux}} > \frac{1}{4} n_{\text{stab}}$
- -Linear behavior (even beyond tadpole bound)
- -Coefficient $\alpha > \frac{1}{4}$ (vs original value $\frac{1}{3}$)
- Clarified many questions
- Is it only valid for stabilisation of all moduli as originally stated? No, more general than that, valid for $10 \lesssim n_{\rm stab} \leq n_{\rm mod}$
- ightharpoonup Moduli stabilized or (more restrictively) massive? ($n_{\rm mass} \leq n_{\rm stab}$)

 We/many others checked massive, but results in 1^9 at higher order indicate also true with $n_{\rm stab}$

Becker, Rajagaru, Sengupta, Walcher, Wrase '24

see Rajagaru's talk on Tuesday Related story by Grimm

• Tadpole conjecture impressively verified.

- $N_{\text{flux}} > \frac{1}{4} n_{\text{stab}}$
- -Linear behavior (even beyond tadpole bound)
- -Coefficient $\alpha > \frac{1}{4}$ (vs original value $\frac{1}{3}$)
- Clarified many questions
- Is it only valid for stabilisation of all moduli as originally stated? No, more general than that, valid for $10 \lesssim n_{\rm stab} \leq n_{\rm mod}$
- → Moduli stabilized or (more restrictively) massive? ($n_{\rm mass} \le n_{\rm stab}$) We/many others checked massive, but results in 1^9 at higher order indicate also true with $n_{\rm stab}$
- → Does it apply beyond tadpole bound? Yes!

Becker, Rajagaru, Sengupta, Walcher, Wrase '24

see Rajagaru's talk on Tuesday Related story by Grimm

 $N_{\text{flux}} > \frac{1}{4} n_{\text{stab}}$

→ Does it apply to susy/Minkowski solutions only?

Probably yes
$$M|_{DW=0} = \begin{pmatrix} D_I D_J W & g_{I\bar{J}} \bar{W} \\ g_{\bar{I}J} W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix}$$

Shown e.g $W_0 \neq 0$ sol at point with discrete symmetry with $\frac{N_{\text{flux}}}{n_{\text{stab}}} = \frac{3}{1052}$

S.Lust, Wiesner 22

 $N_{\text{flux}} > \frac{1}{4} n_{\text{stab}}$

→ Does it apply to susy/Minkowski solutions only?

Probably yes
$$M|_{DW=0} = \begin{pmatrix} D_I D_J W & g_{I\bar{J}} \bar{W} \\ g_{\bar{I}J} W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix}$$

Shown e.g $W_0 \neq 0$ sol at point with discrete symmetry with $\frac{N_{\text{flux}}}{n_{\text{stab}}} = \frac{3}{1052}$

Here if $W_0 \neq 0 \Rightarrow AdS$

S.Lust, Wiesner 22

 $N_{\rm flux} > \frac{1}{4} n_{\rm stab}$ at generic pt

S.Lust, Wiesner 22

→ Does it apply to susy/Minkowski solutions only?

Probably yes
$$M|_{DW=0} = \begin{pmatrix} D_I D_J W & g_{I\bar{J}} \bar{W} \\ g_{\bar{I}J} W & D_{\bar{I}} D_{\bar{J}} \bar{W} \end{pmatrix}$$

Shown e.g $W_0 \neq 0$ sol at point with discrete symmetry with $\frac{N_{\text{flux}}}{n_{\text{stab}}} = \frac{3}{1052}$

Here if $W_0 \neq 0 \Rightarrow AdS$

→ What does generic point mean?

A point where non-Abelian gauge symmetries is not generic (K3 \times K3)

Bena, Blåbäck, M.G., Lüst 20

Braun, Fraiman, MG, Lust, Parra de Freitas 23

A point with discrete symmetries (Fermat) satisfies tadpole conjecture

Generic = no non-Abelian gauge symmetries?

 $N_{\text{flux}} > \frac{1}{4} n_{\text{stab}}$

 \rightarrow Is it a sugra/classical/ $\mathcal{O}(\alpha')$ /geometric statement?

We've shown that it applies beyond all of that!!

$$N_{\text{flux}} > \frac{1}{4} n_{\text{stab}}$$

 \rightarrow Is it a sugra/classical/ $\mathcal{O}(\alpha')$ /geometric statement?

We've shown that it applies beyond all of that!!

- ullet To stabilise all complex structure/dilaton moduli with $W_0=0$ need either:
 - \rightarrow Small $h^{2,1}$
 - \rightarrow Type IIB orientifolds with $|Q_{O3}| > \frac{1}{4} h^{2,1}$

$$N_{\text{flux}} > \frac{1}{4} n_{\text{stab}}$$

 \rightarrow Is it a sugra/classical/ $\mathcal{O}(\alpha')$ /geometric statement?

We've shown that it applies beyond all of that!!

- ullet To stabilise all complex structure/dilaton moduli with $W_0=0$ need either:
 - \rightarrow Small $h^{2,1}$
 - \rightarrow Type IIB orientifolds with $|Q_{O3}| > \frac{1}{4}h^{2,1}$

THANK YOU!