Instituto de Física Teórica presents:

VUKAWAS E NEUTRINOS

INFINITE DISTANCE

by Fernando Marchesano

based on 2403.07979 & 2406.14609 w/Luis E. Ibáñez & Gonzalo F. Casas

WHAT IS THIS TALK ABOUT?

STRINGS

- Yukawas in 4d N=1 chiral CY orientifold vacua
- The limit $Y \rightarrow 0$: What goes wrong?
- Kinetic terms of chiral fields
- Light gonion & KK towers
- Massive U(1)'s and monopoles

&

PHENO

- Dirac vs. Majorana neutrinos
- How to get small Dirac masses.As a consequence:
 - ◆ All scales fixed
 - ◆ Low M_s and 2 large dimensions
 - \bullet Λ_{cc} and large dimensions

There is nothing more pheno than a neutrino

Yukawas in type IIA orientifolds

4d $\mathcal{N} = 1$ chiral EFTs based on intersecting D6-branes

Blumenhagen et al. '00 Aldazábal et al. '00

Yukawas arise from worldsheet instantons connecting three intersections hosting chiral matter

Yukawas in type IIA orientifolds

4d $\mathcal{N} = 1$ chiral EFTs based on intersecting D6-branes

Blumenhagen et al. '00 Aldazábal et al. '00

Yukawas arise from worldsheet instantons connecting three intersections hosting chiral matter

$$\left(W_{ijk}^{\text{tree}} + W_{ijk}^{\text{np}}\right)$$

Kähler complex structure moduli T moduli ($\sim e^{-2\pi U}$)

Cremades, Ibanez, F.M '03-04, Conlon, Maharana, Zuevedo'08,

Abel & Goodsell'06, Blumenhagen et al. '07, Ibáñez & Richter'08

Some questions

PHENO

- Can we reproduce the fermion mass hierarchies of the SM + ν 's in string theory?
- Initial strategy: use $Y_{ijk}^{\text{tree}} + Y_{ijk}^{\text{np}}$ + see-saw mechanism for ν 's

Blumenhagen, Cvetic, Weigand'06 Ibáñez & Uranga'06

- However, in practice it is not that easy: Ibáñez, Schellekens, Uranga'07
- So what if we tried to obtain the hierarchies directly from Y_{ijk}^{tree} ?
- Neutrinos should be Dirac, and we are close to the limit $Y \rightarrow 0$

8

SWAMPY

- What happens when $Y \rightarrow 0$?
- Do Yukawas behave like gauge couplings in quantum gravity?

Palti'20 Cribiori & Farakos'23

- Does Y → 0 happen at infinite distance only? If yes, why?
 What goes wrong with the EFT?
- Do towers of light particles arise when $Y \rightarrow 0$? Is there a WGC-like bound $m \le YM_P$?

How do we implement $Y \rightarrow 0$?

$$Y_{ijk} = e^{K/2} \left[K_{i\bar{i}} K_{j\bar{j}} K_{k\bar{k}} \right]^{-1/2} \left(W_{ijk}^{\text{tree}} + W_{ijk}^{\text{np}} \right)$$

In principle one can move in field space to set $W_{ijk}^{tree} = 0$ for some entries

However:

- _ There is no guarantee that $W_{ijk}^{\rm np}=0$
- _ A continuous limit $W_{ijk}^{\rm np} o 0$ is typically at infinite distance
- The rank of $W_{ijk}^{
 m tree}$ is oftentimes topological

Cecotti et al. '09

Our strategy will be to take $K_{iar{i}} o\infty$

Yukawas in type IIA orientifolds

Toroidal setup: Cremades, Ibanez, 7.M '03-04

 H^{k}

Yukawas in type IIA orientifolds

Toroidal setup:

Cremades, Ibanez, F.M '03-04

(cpx. str. moduli U')

$$K_{i\bar{i}} = F(T) e^{\phi_4} \prod_{r=1}^{3} \left[\frac{\Gamma(|\chi_i^r|)}{\Gamma(1-|\chi_i^r|)} \right]^{1/2}$$

moduli

 $\mathcal{N}=2$ sectors: only two angles

Open string twist: $|\chi_i^r| = |\theta_{ab}^r|$ or $1 - |\theta_{ab}^r|$

Cuetic & Papadimitriou'03

Lüst et al. '04, Font & Ibáñez'04

Bertolini et al. '05, Akerblom et al. '07

Billò et al. '07. Di Vecchia et al. '08

Cámara, Condeescu, Dudas'09

Kähler metrics and gonions

$$K_{i\bar{i}} = F(T) e^{\phi_4} \prod_{r=1}^{3} \left[\frac{\Gamma(|\chi_i^r|)}{\Gamma(1-|\chi_i^r|)} \right]^{1/2} \xrightarrow{|\theta^3| \simeq |\theta^1| + |\theta^2|} \simeq \left[\frac{e^{2\phi_4} |\theta^3|}{|\theta^1| |\theta^2|} \right]^{1/2}$$

Kinetic terms blow up for small intersection angles. Precisely in this limit a tower of light open string oscillations appears \rightarrow *gonions*

Berkooz, Douglas, Leigh'96 Aldazábal et al. '00

$$K_{i\bar{i}} \simeq e^{2\phi_4} \left(\frac{M_P}{m_{\rm gon}^i}\right)^{1/2}$$

Lightest gonion tower

Can be derived from the *Emergence Proposal*

See Gouzalo F. Casas' talk!

Yukawas and gonions

Due to locality, all this is valid in a CY as well:

$$|Y_{ijk}|^2 \simeq B e^{-2\phi_4} \frac{m_{\text{gon}}^i}{M_{\text{P}}} \frac{m_{\text{gon}}^j}{M_{\text{P}}} \frac{m_{\text{gon}}^k}{M_{\text{P}}}$$

$$|Y| \to 0 \implies \frac{m_{\rm gon}^l}{M_{\rm P}} \to 0$$
 for some i

$$e^{-\phi_4} \gg 1$$
 control regime

Large complex structure limits:

$$e^{\phi_4} \to 0 \implies \frac{m_{\text{gon}}}{M_{\text{P}}} = e^{\phi_4} \frac{m_{\text{gon}}}{M_{\text{S}}} < e^{\phi_4} \to 0$$

Yukawas and gonions

Due to locality, all this is valid in a CY as well:

$$|Y_{ijk}|^2 \simeq B e^{-2\phi_4} \frac{m_{\text{gon}}^i}{M_{\text{P}}} \frac{m_{\text{gon}}^j}{M_{\text{P}}} \frac{m_{\text{gon}}^k}{M_{\text{P}}}$$

$$|Y| \to 0 \implies \frac{m_{\mathrm{gon}}^i}{M_{\mathrm{P}}} \to 0$$
 for some i

Special case: $\mathcal{N}=2$ sector involved

$$K_{i\bar{i}} \simeq e^{2\phi_4} h_{i\bar{i}} \implies |Y_{ijk}|^2 \simeq h_{i\bar{i}}^{-1} \frac{m_{\text{gon}}^J}{M_s} \frac{m_{\text{gon}}^k}{M_s}$$

e.g. mirror of local IIB models

Conlon, Cremades, Zuevedo'06

$$e^{-\phi_4} \gg 1$$
 control regime

Large complex structure limits:

$$e^{\phi_4} \to 0 \implies \frac{m_{\text{gon}}}{M_{\text{P}}} = e^{\phi_4} \frac{m_{\text{gon}}}{M_{\text{S}}} < e^{\phi_4} \to 0$$

Gonions and monopoles $K_{i\bar{i}} \simeq \left| \frac{e^{2\phi_4} |\theta^3|}{|\theta^1| |\theta^2|} \right|^{1/2} \simeq e^{2\phi_4} \left(\frac{M_P}{m_{\text{con}}^i} \right)^{1/2}$

$$K_{i\bar{i}} \simeq \left[\frac{e^{2\phi_4} |\theta^3|}{|\theta^1| |\theta^2|}\right]^{1/2} \simeq e^{2\phi_4} \left(\frac{M_P}{m_{\text{gon}}^i}\right)^{1/2}$$

Ideally, one would like to express the Kähler metrics in terms of complex structure moduli vevs, instead of intersection angles

Extremely challenging beyond toroidal geometries

Idea: relate intersection angles with FI-terms, in turn related to the tensions of 4d EFT strings that couple to massive U(1)'s, and end on their monopoles

$$(\theta^1 + \theta^2 + \theta^3) M_s^2 = g^2 \xi = Q^K T_{D4,K}$$

Estimate:

$$m_{\text{gon,min}}^2 \sim \min_K \{g^2 Q^K T_{\text{D4},K}\}$$

4d EFT string T only vanishes at infinite distance boundaries

Lanza et al. 21

The limit $Y \rightarrow 0$

Using this estimate, one obtains the following picture:

- $Y \rightarrow 0$ implies $g \rightarrow 0$, for some gauge coupling
- There is always a tower of CY KK modes below the gonion tower
- If they scale similarly, the KK towers are equally or more dense than the gonion towers → dimensions open up in pairs
- Typical asymptotic behaviour of the Yukawas: $Y \sim \frac{1}{u^r}$ $r = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$
- Species scale: $M_{\scriptscriptstyle S}$ or $T_{{
 m D4}}$

The limit $Y \rightarrow 0$

Wide casuistic, but there are some prototypical scenarios:

NEUTRINO NATURE

Majorana

OR

DIRAC

- Involve O(1) D-brane instantons
- Large M_s, instanton cycle small
- Specific intersection angles with SM branes. In practice not easy

Blumenhagen, Cvetic, Weigand'06 Ibáñez & Uranga'06

 $\nu_R \nu_R M_s e^{-2\pi T}$

- Small Dirac masses arise at small angles: boundaries of field space
- Small 4d dilaton $\rightarrow M_s$ small
- Swampland criteria prefer Dirac over Majorana. Bound $m_{\nu}^{\min} \lesssim \Lambda_{\rm cc}^{1/4}$

Ibáñez, Martin-Lozano, Valenzuela 17 Hamada & Shiu 17

Example: five-stack D-brane model

Aldazábal et al. '00, Wijnholt & Verlinde'05

Antoniadis & Rondeau'21

$$SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_{\tilde{c}} \times U(1)_d$$

$$Q_Y = \frac{2}{3}Q_a + \frac{1}{2}Q_b + Q_c$$

$$g_a, g_b, g_c \sim \text{const}$$
.

$$Q_{\nu} = Q_{\tilde{c}} - Q_d$$

$$g_{\nu} \rightarrow 0$$

Example: five-stack D-brane model

Aldazábal et al. '00, Wijnholt & Verlinde'05
Antoniadis & Rondeau'21

$$SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_{\tilde{c}} \times U(1)_d$$

$$Q_Y = \frac{2}{3}Q_a + \frac{1}{2}Q_b + Q_c$$

$$g_a, g_b, g_c \sim \text{const.}$$

$$Q_{\nu} = Q_{\tilde{c}} - Q_d$$
$$g_{\nu} \to 0$$

Mirror type IIB picture:

Small volume $\mathcal{N} = 2$ sectors

Example: five-stack D-brane model

Aldazábal et al. '00, Wijnholt & Verlinde'05
Antoniadis & Rondeau'21

$$SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_{\tilde{c}} \times U(1)_d$$

$$Q_Y = \frac{2}{3}Q_a + \frac{1}{2}Q_b + Q_c$$

$$g_a, g_b, g_c \sim \text{const.}$$

$$Q_{\nu} = Q_{\tilde{c}} - Q_d$$
$$g_{\nu} \to 0$$

Mirror type IIB picture:

+ \tilde{c} , d = flavour D7-branes with growing volume

Example: five-stack D-brane model

Aldazábal et al. '00, Wijnholt & Verlinde' 05

Antoniadis & Rondeau' 21

$$SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_{\tilde{c}} \times U(1)_d$$

$$Q_Y = \frac{2}{3}Q_a + \frac{1}{2}Q_b + Q_c$$

$$Q_{\nu} = Q_{\tilde{c}} - Q_d$$

We grow the modulus that controls g_{ν}

$$\operatorname{Re} f_{\nu\nu} = u \to \infty \implies g_{\nu} \simeq \frac{1}{u^{1/2}} \to 0$$

Due to $U(1)_{\nu}$ anomaly cancellation FI-terms shrink:

$$m_{\text{gon},\nu} \sim \frac{M_{\text{P}}}{u} \sim g_{\nu}^2 M_{\text{P}}$$

Yukawa $Y_{\nu,ij} H_u L^i \nu_R^j$:

$$Y_{\nu,ij} \simeq e^{-\phi_4} \left(\frac{m_{{
m gon},\nu}^i}{M_{
m P}}\right)^{1/2} \left(\frac{m_{{
m gon},L}^j}{M_{
m P}}\right)^{1/2} \left(\frac{m_{{
m gon},H_u}}{M_{
m P}}\right)^{1/2} \simeq \left(\frac{m_{{
m gon},\nu}^i}{M_{
m P}}\right)^{1/2} \simeq g_{\nu}$$

The neutrino scales

$$g_{\nu} \sim u^{-1/2} \to 0$$

$$m_{\text{gon},\nu} \sim g_{\nu}^2 M_{\text{P}}$$

$$Y_{\nu,ij} \sim g_{\nu}$$

Case in which two dimensions open up:

$$m_{\rm KK} \sim m_{\rm winding} \sim g_{\nu}^2 M_{\rm P}$$

Species scale = string scale

$$\Lambda_{\rm sp} \simeq M_s \simeq g_{\nu} M_{\rm P}$$

See Gonzalo 7. Casas' talk

All scales fixed in terms of g_{ν}

The neutrino scales

$$g_{\nu} \sim u^{-1/2} \to 0$$

$$m_{\text{gon},\nu} \sim g_{\nu}^2 M_{\text{P}}$$

$$Y_{\nu,ij} \sim g_{\nu}$$

Case in which two dimensions open up:

$$m_{\rm KK} \sim m_{\rm winding} \sim g_{\nu}^2 M_{\rm P}$$

Species scale = string scale

$$\Lambda_{\rm sp} \simeq M_s \simeq g_{\nu} M_{\rm P}$$

See Gonzalo 7. Casas' talk

Assuming $Y_{\nu,i} \simeq Y_{\nu} \simeq 7 \times 10^{-13}$:

String Scale	SM gonions	ν_R tower	large dim	Vector boson	Gravitino
M_s	$m_{ m gon}^{ m SM}$	$m_{ m gon}^{ u}$	$m_{ m KK/w}$	$M_{V_ u}$	$m_{3/2}$
$g_ u M_{ m P}$	$\lesssim M_s$	$g_ u^2 M_{ m P}$	$g_ u^2 M_{ m P}$	$g_ u ar{H} - g_ u M_{ m P}$	$\lesssim M_s^2/M_{ m P}$
$g_{\nu} = Y_{\nu,3} \; , \; 700 \; {\rm TeV}$	$\lesssim 700 \text{ TeV}$	500 eV	500 eV	$0.5~\mathrm{eV}\text{-}\ 700~\mathrm{TeV}$	$\lesssim 500 \text{ eV}$

 M_s too low for more than two large dimensions!!

The cosmological constant and neutrinos

By compactifying the SM on a circle, Swampland criteria [AdS instability and AdS distance Conjectures] provide the following bound for Dirac neutrinos:

Ibáñez, Martin-Lozano, Valenzuela 17 Hamada & Shiu 17 Gonzalo, Ibáñez, Valenzuela 21

$$m_{\nu}^{\rm min} \lesssim \Lambda_{\rm cc}^{1/4}$$

Using that
$$m_{\nu,i} \simeq Y_{\nu,i} \langle H_u \rangle \implies Y_{\nu}^{\min} \lesssim \frac{\Lambda_{\rm cc}^{1/4}}{M_{\rm EW}}$$

 \Longrightarrow gonion tower \Longrightarrow two large dimensions

similar to Castellano, Ibáñez, Herráez 23

Conclusions

- In the context of SM-like type IIA orientifold compactifications, we have explored limits of small Yukawa couplings.
- Small Yukawas always come with i) a light tower of gonions (massive replicas of the chiral fields at the intersection) and ii) small gauge couplings. They appear at infinite distance boundaries of the moduli space.
- There is a wide casuistic, but things narrow down when we want to apply this setup to obtain realistic Dirac neutrino masses \Longrightarrow universal scheme.
- Key model building feature: massive $U(1)_{\nu}$ under which right-handed neutrinos are charged, but independent of hypercharge: take $g_{\nu} \to 0$ (e.g. flavour 7-branes).
- All relevant scales fixed in terms of g_{ν} . Low string scale and two large dimensions, close to possible test in future colliders.

Neutrino scales

$$g_{\nu} \sim u^{-1/2} \rightarrow 0$$

$$g_{\nu} M_{\rm P} \qquad M_{\rm S}$$

$$Y_{\nu,i} \sim g_{\nu} \delta^{i} \qquad i = 1,2,3$$

$$g_{\nu}^{2} M_{\rm P} \qquad m_{\rm KK}, m_{\rm gon}$$

String Scale	SM gonions	ν_R tower	large dim	Vector boson	Gravitino
M_s	$m_{ m gon}^{ m SM}$	$m_{ m gon}^{ u}$	$m_{ m KK/w}$	$M_{V_ u}$	$m_{3/2}$
$g_ u M_{ m P}$	$\lesssim M_s$	$g_ u^2 M_{ m P}$	$g_ u^2 M_{ m P}$	$g_ u ar{H} - g_ u M_{ m P}$	$\lesssim M_s^2/M_{ m P}$
$g_{\nu} = Y_{\nu,3} , 700 \text{ TeV}$	$\lesssim 700 \text{ TeV}$	500 eV	500 eV	$0.5~\mathrm{eV}$ - $700~\mathrm{TeV}$	$\lesssim 500 \text{ eV}$
$g_{\nu}=Y_{\nu,1}$, 10 TeV	$\lesssim 10 \text{ TeV}$	$0.1~{ m eV}$	$0.1~{ m eV}$	$10^{-3} \text{ eV} - 10 \text{ TeV}$	$\lesssim 0.1 \text{ eV}$

Table 3: Spectrum of masses and scales from imposing Dirac character to neutrino masses in string theory. Numerical results are shown for two limiting cases with $g_{\nu} \simeq Y_{\nu,3} \simeq 7 \times 10^{-13}$ and $g_{\nu} \simeq Y_{\nu,1} \simeq 10^{-14}$.