Instituto de Física Teórica presents:

YUKAWAS

l
U

NEUTRINOS @ INFINITE DISTANCE

by Fernando Marchesano

based on 2403.07979 & 2406.14609 w/Luis E. Ibáñez & Gonzalo F. Casas

WHAT IS THIS TALK ABOUT?

STRINGS & PHENO

- Yukawas in 4d N=1 chiral CY orientifold vacua
- $-$ The limit $Y \to 0$: What goes wrong?
- Kinetic terms of chiral fields
- Light gonion & KK towers
- Massive U(1)'s and monopoles

- Dirac vs. Majorana neutrinos
- How to get small Dirac masses. As a consequence:
	- ✦ All scales fixed
	- \triangleleft Low M_s and 2 large dimensions
	- \triangleleft Λ_{cc} and large dimensions

Yukawas in type IIA orientifolds

4d $\mathcal{N} = 1$ chiral EFTs based on intersecting D6-branes

Yukawas arise from worldsheet instantons connecting three intersections hosting chiral matter Q^i

Blumenhagen et al.'00 Aldazábal et al. '00

Yukawas in type IIA orientifolds

SOME QUESTIONS

- Can we reproduce the fermion mass hierarchies of the $SM + \nu's$ in string theory?
- Initial strategy: use $Y_{ijk}^{\text{tree}} + Y_{ijk}^{\text{np}}$ + see-saw mechanism for ν 's

Blumenhagen, Cvetic, Weigand'06 Ibáñez & Uranga'06

- However, in practice it is not that easy: *Ibáñez, Schellekens, Uranga'07*
- So what if we tried to obtain the hierarchies directly from Y_{ijk}^{tree} ?
- Neutrinos should be Dirac, and we are close to the limit $Y \to 0$

PHENO & SWAMPY

- \sim What happens when *Y* \rightarrow 0 ?
- Do Yukawas behave like gauge couplings in quantum gravity? *Palti'20 Cribiori & Farakos'23*
- $-$ Does $Y \rightarrow 0$ happen at infinite distance only? If yes, why? What goes wrong with the EFT?
- Do towers of light particles arise when $Y \to 0$? Is there a WGC-like bound $m \leq Y M_{\rm P}$?

Yukawas @ infinite distance

How do we implement $Y \rightarrow 0$?

$$
Y_{ijk} = e^{K/2} \left[K_{i\bar{i}} K_{j\bar{j}} K_{k\bar{k}} \right]^{-1/2} \left(W_{ijk}^{\text{tree}} + W_{ijk}^{\text{np}} \right)
$$

In principle one can move in field space to set $W_{ijk}^{\rm tree}=0\,$ for some entries However:

- ₋ There is no guarantee that $W^\text{np}_{ijk} = 0$
- ₋ A continuous limit $W^\text{np}_{ijk} \to 0$ is typically at infinite distance
- The rank of W_{ijk}^{tree} is oftentimes topological *Cecotti et al.'09*

Our strategy will be to take
$$
K_{i\bar{i}} \to \infty
$$

Kähler metrics and gonions

$$
K_{i\bar{i}} = F(T) e^{\phi_4} \prod_{r=1}^{3} \left[\frac{\Gamma(|\chi_i^r|)}{\Gamma(1 - |\chi_i^r|)} \right]^{1/2} \xrightarrow{\qquad |\theta^3| \approx |\theta^1| + |\theta^2|} \approx \left[\frac{e^{2\phi_4} |\theta^3|}{|\theta^1| |\theta^2|} \right]^{1/2}
$$

Kinetic terms blow up for small intersection angles. Precisely in this limit a tower of light open string oscillations appears → *gonions*

Berkooz, Douglas, Leigh'96 Aldazábal et al.'00

Yukawas and gonions

Due to locality, all this is valid in a CY as well:

$$
\left(|Y_{ijk}|^2 \simeq Be^{-2\phi_4} \frac{m_{\text{gon}}^i}{M_{\text{P}}} \frac{m_{\text{gon}}^j}{M_{\text{P}}} \frac{m_{\text{gon}}^k}{M_{\text{P}}}\right)
$$

 $M_{\rm P}$

 $\rightarrow 0$ for some *i*

 $|Y| \rightarrow 0 \implies$

 $e^{-\phi_4}$ ≫ 1 control regime

Large complex structure limits: $e^{\phi_4} \rightarrow 0 \implies$ *m*gon $M_{\rm P}$ $= e^{\phi_4}$ *m*gon M_{s} $\langle e^{\phi_4} \rightarrow 0 \rangle$

Yukawas and gonions

Due to locality, all this is valid in a CY as well:

$$
\left(|Y_{ijk}|^2 \simeq B e^{-2\phi_4} \frac{m_{\text{gon}}^i}{M_{\text{P}}} \frac{m_{\text{gon}}^j}{M_{\text{P}}} \frac{m_{\text{gon}}^k}{M_{\text{P}}} \right)
$$

$$
|Y| \to 0 \implies \frac{m_{\text{gon}}^i}{M_{\text{P}}} \to 0 \quad \text{for some } i
$$

Special case: $\mathcal{N}=2$ sector involved

$$
K_{i\bar{i}} \simeq e^{2\phi_4} h_{i\bar{i}} \implies |Y_{ijk}|^2 \simeq h_{i\bar{i}}^{-1} \frac{m_{\text{gon}}^j}{M_s} \frac{m_{\text{gon}}^k}{M_s}
$$

e.g. mirror of local IIB models

Conlon, Cremades, Quevedo'06

 $e^{-\phi_4}$ ≫ 1 control regime

Large complex structure limits:

$$
e^{\phi_4} \to 0 \implies \frac{m_{\text{gon}}}{M_{\text{P}}} = e^{\phi_4} \frac{m_{\text{gon}}}{M_s} < e^{\phi_4} \to 0
$$

Gonions and monopoles

$$
K_{i\bar{i}} \simeq \left[\frac{e^{2\phi_4} |\theta^3|}{|\theta^1| |\theta^2|} \right]^{1/2} \simeq e^{2\phi_4} \left(\frac{M_P}{m_{\text{gon}}^i} \right)^{1/2}
$$

Ideally, one would like to express the Kähler metrics in terms of complex structure moduli vevs, instead of intersection angles

Extremely challenging beyond toroidal geometries

Idea: relate intersection angles with FI-terms, in turn related to the tensions of 4d EFT strings that couple to massive U(1)'s, and end on their monopoles

$$
\left(\theta^1 + \theta^2 + \theta^3\right)M_s^2 = g^2\xi = Q^K T_{\text{D4},K}
$$

Estimate:

$$
m_{\text{gon,min}}^2 \sim \min_K \{ g^2 Q^K T_{\text{D4},K} \}
$$

4d EFT string T only vanishes at infinite distance boundaries

Lanza et al.'21

The limit $Y \to 0$

Using this estimate, one obtains the following picture:

- $Y \to 0$ implies $g \to 0$, for some gauge coupling
- There is always a tower of CY KK modes below the gonion tower
- If they scale similarly, the KK towers are equally or more dense than the gonion towers \rightarrow dimensions open up in pairs
- Typical asymptotic behaviour of the Yukawas: *Y* ∼

1 *ur* $r =$ 1 4 , 1 2 , 3 4 ,1

- Species scale: M_s or $T_{\rm D4}$

The limit $Y \to 0$

Wide casuistic, but there are some prototypical scenarios:

Neutrino physics

NEUTRINO NATURE

MAJORANA OR DIRAC where det(*ab*) denotes a polynomial in the fields (*k*) \overline{M} **b** *MATODANIA* Ω at the *ab* intersection. Its role is analogous to the operator *O* in (13.10). It is now

- Involve O(1) D-brane instantons det(*ab*). The mechanism generalizes to situations with a more involved structure \sim the couplings (13.23), see later for examples. Note that in what concerns that in what concerns the interaction of \sim
- Large $\rm M_s$, instanton cycle small charged matter content of the instanton generates content of the instanton generates which are instant forbidden by the *Latge in_s*, installion tytic sinan
- Specific intersection angles with SM branes. In practice not easy α reposible integration enclosurith this sense, the intersection number *Ia,*inst of the D2-brane instanton with the D6*a*bri branes. In practice not easy

- Small Dirac masses arise at small angles: boundaries of field space
- Small 4d dilaton \rightarrow M_s small
- Swampland criteria prefer Dirac *over Majorana. Bound m_μ^{min}* ≲ Λ^{1/4}_{cc}

 Ibáñez, Martin-Lozano, Valenzuela'17 Hamada & Shiu'17

Neutrinos @ infinite distance

Example: five-stack D-brane model

Aldazábal et al.'00, Wijnholt & Verlinde'05 Antoniadis & Rondeau'21

 \tilde{c} ν_R *d eR* Q_L *D^R U^R* L *L* Q_L *b* H_d H_u $c \times 4$ *a b* $SU(3) \times SU(2) \times U(1)_{a} \times U(1)_{b} \times U(1)_{c} \times U(1)_{\tilde{c}} \times U(1)_{d}$ $Q_Y =$ 2 3 Q_a + 1 2 $Q_b + Q_c$ *Q_{<i>v*} $Q_{\nu} = Q_{\tilde{c}} - Q_d$
 $g_{\nu} \to 0$ $g_a, g_b, g_c \sim \text{const.}$. $g_\nu \to 0$ Small volume $c \searrow$ \qquad \qquad Large volume $\mathcal{N}=2$ sectors

Example: five-stack D-brane model

Aldazábal et al.'00, Wijnholt & Verlinde'05 Antoniadis & Rondeau'21

 $SU(3) \times SU(2) \times U(1)_{a} \times U(1)_{b} \times U(1)_{c} \times U(1)_{\tilde{c}} \times U(1)_{d}$

 $Q_Y =$ 2 3 Q_a + 1 2 $Q_b + Q_c$ *Q_{<i>v*}

 $g_a, g_b, g_c \sim \text{const.}$. $g_\nu \to 0$

$$
Q_{\nu} = Q_{\tilde{c}} - Q_d
$$

$$
Q_{\nu} \to 0
$$

Mirror type IIB picture:

Small volume $\mathcal{N}=2$ sectors

Example: five-stack D-brane model

Aldazábal et al.'00, Wijnholt & Verlinde'05 Antoniadis & Rondeau'21

 $SU(3) \times SU(2) \times U(1)_{a} \times U(1)_{b} \times U(1)_{c} \times U(1)_{c} \times U(1)_{d}$

 $g_a, g_b, g_c \sim \text{const.}$. $g_\nu \to 0$

 $Q_{\nu} = Q_{\tilde{c}} - Q_d$
 $g_{\nu} \to 0$

Mirror type IIB picture:

Example: five-stack D-brane model

Aldazábal et al.'00, Wijnholt & Verlinde'05 Antoniadis & Rondeau'21

 $SU(3) \times SU(2) \times U(1)_{a} \times U(1)_{b} \times U(1)_{c} \times U(1)_{\tilde{c}} \times U(1)_{d}$

$$
Q_Y = \frac{2}{3}Q_a + \frac{1}{2}Q_b + Q_c
$$
 Q_u

We grow the modulus that controls g_{ν}

$$
\text{Re} f_{\nu\nu} = u \to \infty \implies g_{\nu} \simeq \frac{1}{u^{1/2}} \to 0
$$

 Y ukawa $Y_{\nu,ij}H_{\mu}L^i\nu_R^j$:

$$
Y_{\nu,ij} \simeq e^{-\phi_4} \left(\frac{m_{\text{gon},\nu}^i}{M_{\text{P}}}\right)^{1/2} \left(\frac{m_{\text{gon},L}^j}{M_{\text{P}}}\right)^{1/2} \left(\frac{m_{\text{gon},H_u}}{M_{\text{P}}}\right)^{1/2} \simeq \left(\frac{m_{\text{gon},\nu}^i}{M_{\text{P}}}\right)^{1/2} \simeq g_{\nu}
$$

Due to $U(1)_\nu$ anomaly cancellation FI-terms shrink:

$$
m_{\text{gon},\nu} \sim \frac{M_{\text{P}}}{u} \sim g_{\nu}^2 M_{\text{P}}
$$

$$
Q_{\nu} = Q_{\tilde{c}} - Q_d
$$

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}))
$$

The neutrino scales

$$
g_{\nu} \sim u^{-1/2} \to 0
$$

 $m_{\text{gon},\nu} \sim g_{\nu}^2$

 $Y_{\nu,ij} \sim g_{\nu}$

Case in which two dimensions open up:

 $m_{\rm KK} \sim m_{\rm winding} \sim g_\nu^2 M_{\rm Pl}$

 \blacktriangle

$$
\text{Species scale} = \text{string scale} \qquad \qquad \Lambda_{sp} \simeq M_s \simeq g_\nu M_\text{P} \qquad \qquad \text{See Gauss} \ \mathcal{F}.\ \text{Case's table}
$$

$$
M_{\rm P}
$$
\n
$$
g_{\nu}M_{\rm P}
$$
\n
$$
M_{\rm s}
$$
\n
$$
g_{\nu}^{2}M_{\rm P}
$$
\n
$$
m_{\rm KK}, m_{\rm gon}
$$

All scales fixed in
terms of
$$
g_{\nu}
$$

The neutrino scales

$$
g_{\nu} \sim u^{-1/2} \to 0
$$

 $m_{\text{gon},\nu} \sim g_{\nu}^2$

 $Y_{\nu,ij} \sim g_{\nu}$

Case in which two dimensions open up:

 $m_{\rm KK} \sim m_{\rm winding} \sim g_\nu^2 M_{\rm Pl}$

 S pecies scale = string scale $\Lambda_{\text{sp}} \simeq M_s \simeq g_\nu M_P$ *See Gonzalo 7. Casas' talk*

Assuming $Y_{\nu,i} \simeq Y_{\nu} \simeq 7 \times 10^{-13}$:

*M*_s too low for more than two large dimensions!!

The cosmological constant and neutrinos

By compactifying the SM on a circle, Swampland criteria [AdS instability and AdS distance Conjectures] provide the following bound for Dirac neutrinos:

 Ibáñez, Martin-Lozano, Valenzuela'17 Hamada & Shiu'17 Gonzalo,Ibáñez, Valenzuela'21

 $m_{\nu}^{\min} \lesssim \Lambda_{\rm cc}^{1/4}$

Using that
$$
m_{\nu,i} \simeq Y_{\nu,i} \langle H_u \rangle \implies Y_{\nu}^{\min} \lesssim \frac{\Lambda_{\rm cc}^{1/4}}{M_{\rm EW}}
$$

 \implies gonion tower \implies two large dimensions

 similar to Castellano,Ibáñez, Herráez'23

Conclusions

- In the context of SM-like type IIA orientifold compactifications, we have explored limits of small Yukawa couplings.
- Small Yukawas always come with i) a light tower of gonions (massive replicas of the chiral fields at the intersection) and ii) small gauge couplings. They appear at infinite distance boundaries of the moduli space.
- There is a wide casuistic, but things narrow down when we want to apply this setup to obtain realistic Dirac neutrino masses \Longrightarrow universal scheme.
- Key model building feature: massive $U(1)_\nu$ under which right-handed neutrinos are charged, but independent of hypercharge: take $g_\nu \to 0\,$ (e.g. flavour 7-branes).
- All relevant scales fixed in terms of g_ν . Low string scale and two large dimensions, close to possible test in future colliders.

Thank you!

BACKUP SLIDES

Neutrino scales

$$
g_{\nu} \sim u^{-1/2} \to 0
$$
\n
$$
g_{\nu}M_{\rm P} - M_{\rm s}
$$
\n
$$
Y_{\nu,i} \sim g_{\nu}\delta^{i}
$$
\n
$$
i = 1,2,3
$$
\n
$$
g_{\nu}^{2}M_{\rm P} - m_{\rm KK}, m_{\rm gon}
$$

 \bigwedge

Table 3: Spectrum of masses and scales from imposing Dirac character to neutrino masses in string theory. Numerical results are shown for two limiting cases with $g_{\nu} \simeq$ $Y_{\nu,3} \simeq 7 \times 10^{-13}$ and $g_{\nu} \simeq Y_{\nu,1} \simeq 10^{-14}$.