

MAX-PLANCK-INSTITUT FÜR PHYSIK

Reflections on the Emergence Proposal

Ralph Blumenhagen

in collaboration with N. Cribiori, <u>A. Gligovic</u> and <u>A. Paraskevopoulou</u> (parallel session talks)

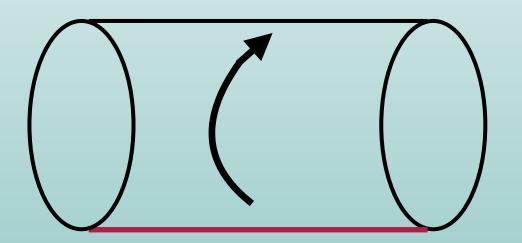
[arXiv: 2309.11551+2309.11554+2404.01371]

Review: [arXiv:2404.05801]

StringPheno, Padova, June 27, 2024

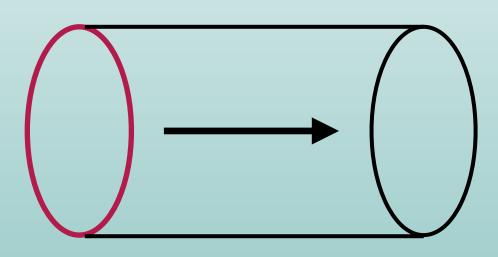
Reflection on Emergence

Appearance of properties of a system that are novel with respect to other (more fundamental) descriptions of the same system. [Butterfield, (2011)]



b.) emergence of gravity: consistent QG theory with light D-branes and decoupled open/closed strings, where gravity is solely a quantum effect (reminiscent: BFSS matrix model [review:W.Taylor. (2001)])

- Example: I-loop annulus amplitude for D-branes \rightarrow tree-level graviton exchange



a.) $g_s \ll 1$ regime: no open strings without closed strings \rightarrow no emergence

Swampland Distance Conjecture + Species Scale

Moduli space of QG contains infinite distance limits: $\phi \to \infty$

• SDC: in such a limit a tower of states becomes exponentially light

 $m \sim m_0 e^{-c\phi}$

- Examples: weak coupling limit, decompactification limit
- Species scale UV cutoff of quantum gravity: $\tilde{\Lambda} < M_{\rm pl}^{(d)}$

$$\tilde{\Lambda} \simeq \frac{M_{\rm pl}}{N_{\rm sp}^{\frac{1}{d-2}}}$$

(in Planck units!)

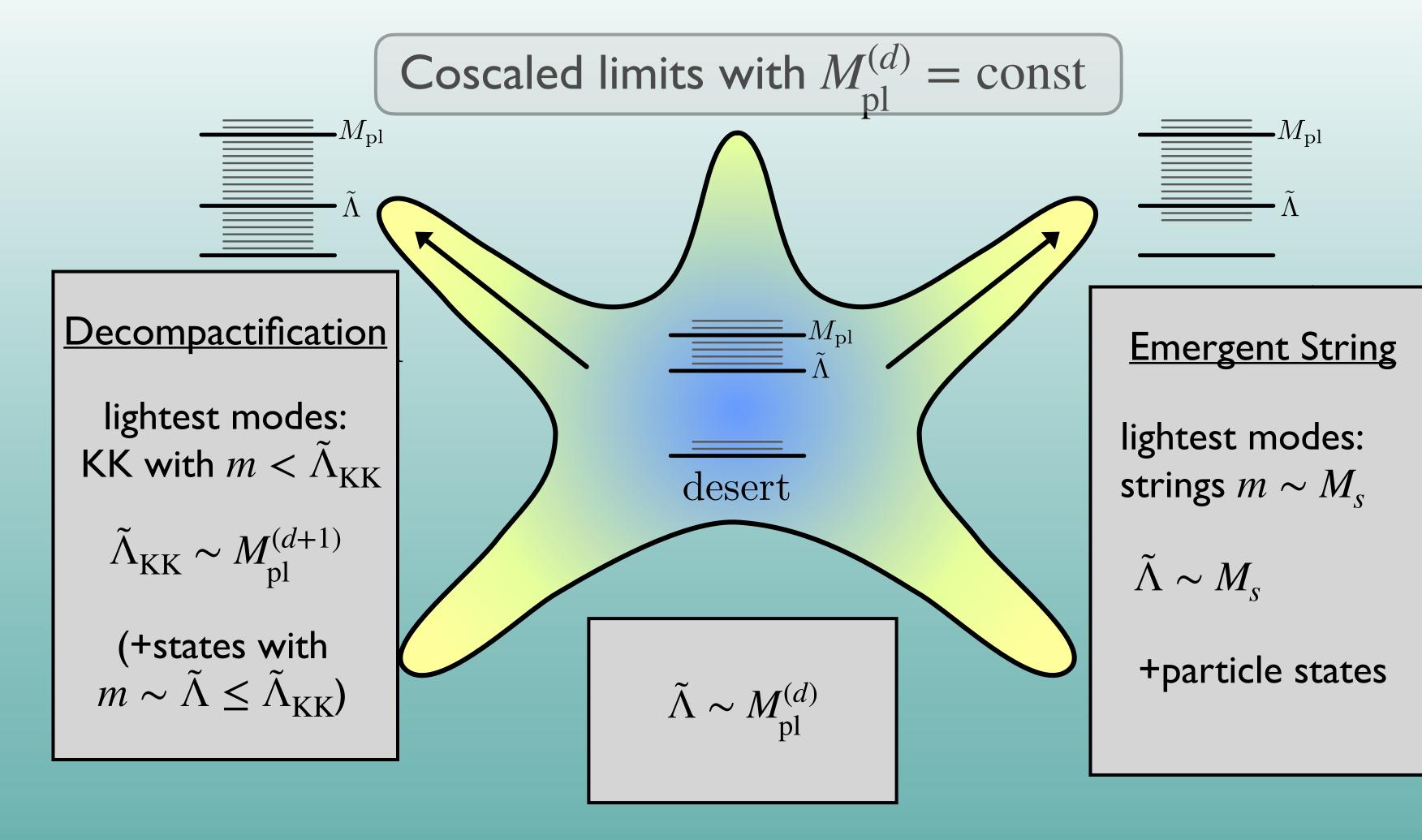
[Ooguri, Vafa (2006)]

- Weak coupling limit:
- Decompact. limit:

$$\tilde{\Lambda} \sim M_s$$
$$\tilde{\Lambda} \sim M_{\rm pl}^{(d+k)}$$

Emergent String Conjecture

Strings and KK modes are the only possibilities



[Lee, Lerche, Weigand (2019)]

- The SDC and $\tilde{\Lambda}$ are usually interpreted as limitations on validity of an EFT
- Working assumption: They also reflect the structure of full <u>perturbative QG theories</u> arising in infinite distance, $t \to \infty$, limits in moduli space
- <u>QG in infinite distance limits:</u>
 - perturbation theory in small paramet
- Hierarchy of towers of states
 - Light towers

 $(\alpha,\ldots,\delta>0)$

Heavy towers

$$m_{\text{pert}}(n) \sim g^{\alpha} n^{\beta} \tilde{\Lambda}$$

 $m_{\text{NP}}(n) \sim n^{\gamma} \frac{\tilde{\Lambda}}{g^{\delta}}$

Perturbative QG Theories

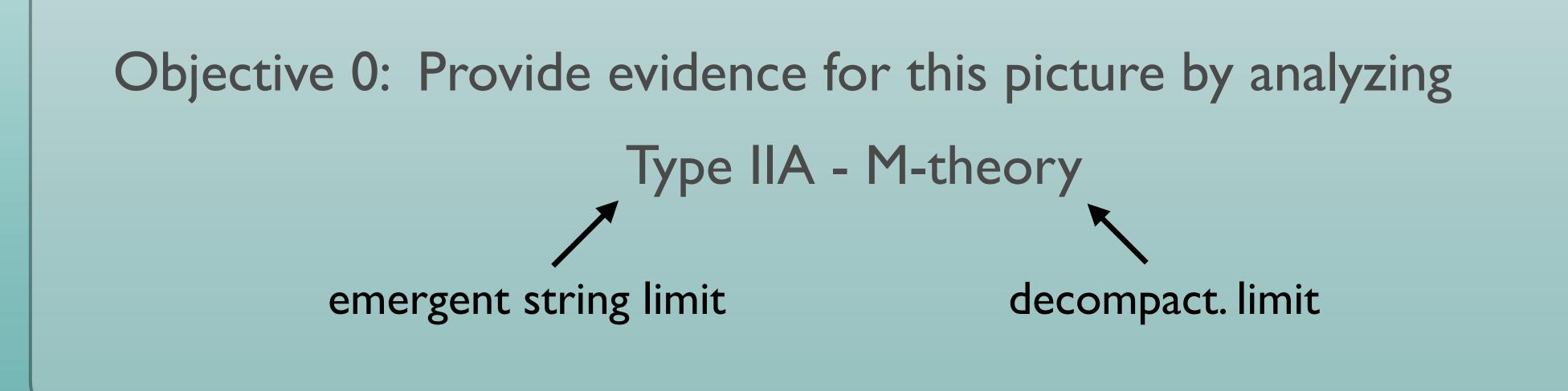
$$g \sim 1/\langle t \rangle \ll 1$$

(fundamental dof)

(classical soliton-like=coherent states)

Perturbative QG Theories

Integrate out only the full light towers in the infinite distance regime



Emergence Proposal

Emergence Proposal:

from review [Palti, (2019)]

The dynamics (kinetic terms) for all fields are emergent in the infrared by integrating out towers of states down from an ultraviolet scale, which is below the Planck scale.

$$\frac{1}{g_{U(1)}^2} \Big|_{1-\text{loop}} \sim \sum_{n=1}^{n_{\text{max}}} Q_n^2 \Big|_{n=1}$$

[Heidenreich, Reece, Rudelius (2018)], [Grimm, Palti, Valenzuela (2018)] see also [Marchesano, Melotti (2022)] [Castellano, Herráez, Ibáñez (2022)] [Bhg, Gligovic, Paraskevopoulou (2023)]

I-loop correction to gauge coupling: tower $M_n = n\Delta m$ with $M_n, q \leq \Lambda_{UV}$,

 $\log\left(\frac{M_n^2}{\mu^2}\right) \sim \frac{1}{g_{U(1)}^2}$

Originally motivated at leading order in a (toy) QFT approach with $M_n, q \leq \Lambda$

Emergence Proposal

Could this be a general property of QG?

was answered negatively in the original work of Ooguri/Vafa [Ooguri, Vafa (2006)]

Objective I: How and where is it realized in quantum gravity (string theory)?

Emergence Proposal

Emergent string limit: Unphysical log-factors appear→sign of no emergence

Decompactification limit: Quantization of M-theory?

- which admit geometric formulation
 - Higher derivative R^4 -terms in theories with maximal supersymmetry by Green-Gutperle-Vanhove (1997) (and Kiritsis, Obers, Pioline)
 - Topological amplitudes \mathcal{F}_g in 4D with N=2 supersymmetry a la Gopakumar-Vafa (1998) [Bhg, Cribiori, Gligovic, Paraskevopoulou,

[Bhg,Gligovic,Paraskevopoulou (2023)]

[Bhg, Cribiori, Gligovic, Paraskevopoulou, 2404.01371]

[Bhg, Cribiori, Gligovic, Paraskevopoulou, 2309.11551]

[Hattab, Palti, 2312.15440+2404.05176]

(Eran's talk at STRINGS'24)

Infinite distance limits

Perturbative fundamental string

- Species scale $\tilde{\Lambda} \sim M_{\rm s}$
 - All other towers are non-perturbative:
- M-theory limit (special decompactification limit)

$$R_{11} \rightarrow \lambda R_{11}, \qquad M_* \rightarrow \frac{M_*}{\lambda^{\frac{1}{d-1}}}, \qquad R_I \rightarrow \lambda^{\frac{1}{d-1}} R_I,$$

(compactified type IIA:
$$g_s \to \lambda^{\frac{3(d-2)}{2(d-1)}} g_s$$
, $M_s \to \lambda^{\frac{d-4}{2(d-1)}} M_s$, $R_I \to \lambda^{\frac{1}{d-1}} R_I$.)

Lighest towers are strings, mass scale M_s , string coupling $g_s \ll 1$ Accompanied by particle like states of mass $M \sim M_s$, KK + winding

(classical = coherent quantum states) $m_{Dp} \simeq \frac{\Lambda}{g_s}$, $m_{NS5} \simeq \frac{\Lambda}{g_s^2}$

Light BPS Towers

- Lightest towers of states: D0-branes with [B] $M_{D0} \sim M_s/g_s \sim M_{\rm pl}^{(d)}/\lambda$
- For such a KK-like tower, the species scale is $\tilde{\Lambda} \sim M_{\rm pl}^{(d)}/\lambda^{1/(d-1)} \sim M$
- Room for additional light towers

$$M_{D2,NS5} \sim M_s / g_s^{1/3} \sim M_{\rm pl}^{(d)} / \lambda^{1/(d-1)} \sim \tilde{\Lambda}$$

M-theory: transverse M2 and M5 branes with KK momentum

es with [Bhg, Cribiori, Gligovic, Paraskevopoulou, 2309.11554]

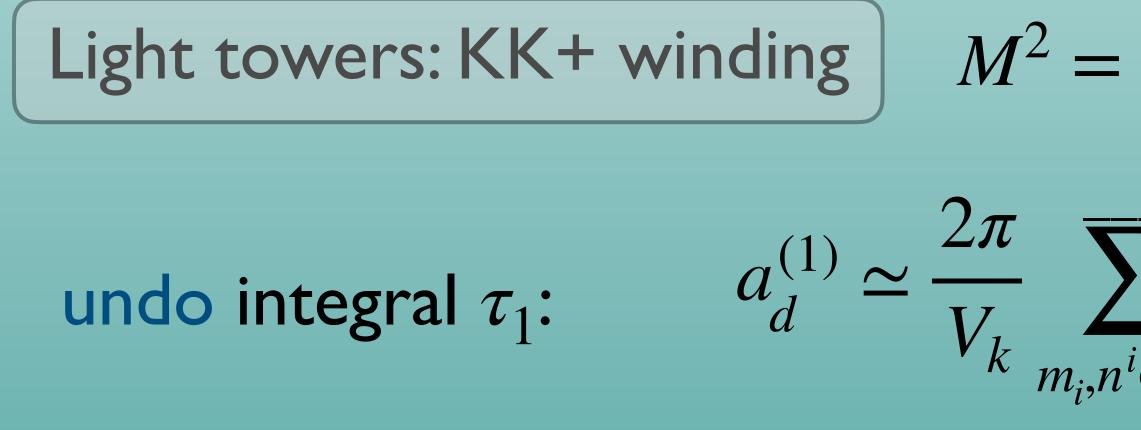
$$^{\prime(d-1)} \sim M_{\mathrm{pl}}^{(d+1)} \sim M_{*}$$

Emergent String: I-loop correction to R^4 term

Higher derivative term

$$S_{R^4} \simeq M_s^{d-8} V_k \int d^d x \sqrt{-g} a_d t_8 t_8 R^4,$$

with the one-loop contribution



General expansion in
$$g_s$$

$$a_d = \frac{c_0}{g_s^2} + \left(c_1 + \mathcal{O}(e^{-S_{ws}})\right) + \mathcal{O}(e^{-S_{st}})$$
$$\underbrace{1-\text{loop}}$$

$$\overline{\sum}_{n_i,n^i \in \mathbb{Z}} \int_{\mathscr{F}} \frac{d^2 \tau}{\tau_2^{\frac{d-6}{2}}} e^{-\pi \tau_2 M^2 - 2\pi i \tau_1 m_i n^i} = \sqrt{1/2} \quad \text{I/2 BPS:} \quad m_i n^i = 0$$

$$m_i G^{ij} m_j + n^i G_{ij} n^j$$

$$\sum_{u^{i} \in \mathbb{Z}} \int_{0}^{\infty} \frac{dt}{t^{\frac{d-6}{2}}} \delta(\text{BPS}) e^{-\pi t M^{2}} = \int_{0}^{\infty} \frac{dt}{t^{\frac{d-6}{2}}} e^{-\pi t M^{2}} = \int_{0}^{$$

M-theoretic Emergence of R^4 term

Higher derivative term

$$S_{R^4} \simeq M_*^{d-8} r_{11} \mathcal{V}_k \int d^d x \sqrt{-g} a_d t_8 t_8 R^4,$$

with the coefficient

$$a_{d,\mathrm{M}}^{(1)} \simeq \frac{2\pi}{r_{11}\mathcal{V}_k} \sum_{N^I, m \in \mathbb{Z}} \int_0^\infty \frac{dt}{t^{\frac{d-6}{2}}} \,\delta(\mathrm{BPS}) \,\exp\left(-\pi t \,N^I \mathcal{M}_{IJ} N^J - \pi t \,\frac{m^2}{r_{11}^2}\right),$$

KK, M2, M5 transverse wrapping numbers particle masses $\mathcal{M} = \text{diag}\left(\frac{1}{r_i^2}, t_{ij}^2, t_{ijklm}^2\right)$ [Green, Gutperle, Vanhove (1997)]

[Russo, Tseytlin (1997)]

[Kiritsis,Pioline (1997)]

[De Wit,Lüst (1999)]

[Obers,Pioline (1999)]

[Calderón-Infante, Delgado, Uranga (2023)]

pers
$$(N^I) = \left(m_i, n^{ij}, n^{ijklm}\right)$$

(axions will induce off-diagonal entries)

Emergence of R^4 term

1/2 BPS conditions $n^{[ij} n^{kl]} + m_p n^{pijkl} = 0, \qquad \# = \binom{k}{4}$ $n^{i[j} n^{klmnp]} = 0, \qquad \# = \binom{k}{6}$

Particle states and 1/2 BPS conditions

d	k	Particles $SL(k)$ reps.	$E_{k(k)}(Z)$	Λ_{E_k}	1/2-BPS: λ_{E_k}
9	1	$[1]_p$	1	1	0
8	2	$[2]_p + [1]_{M2}$	SL(2)	3	2
7	3	$[3]_p + [3]_{M2}$	$SL(3) \times SL(2)$	$(3,\!2)$	(3,1)
6	4	$[4]_p + [6]_{M2}$	SL(5)	10	5
5	5	$[5]_p + [10]_{M2} + [1]_{M5}$	SO(5,5)	16	10
4	6	$[6]_p + [15]_{M2} + [6]_{M5}$	E_6	27	27

Note: U-duality $E_{k+1(k+1)}$

 $n^{ij}m_i = 0, \qquad \# = k$

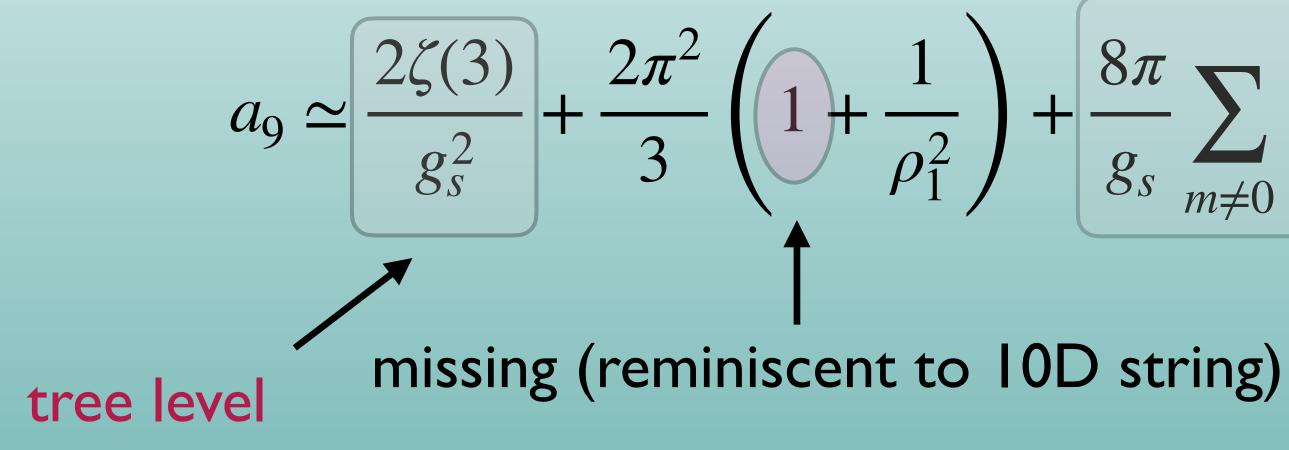
equivalent to section constraints in ExFT (analogous truncation of modes)

[Bossard, Kleinschmidt (2015)]

Emergence in 9D

Example 9D: Evaluate

invoking Poisson resummation of *n* and the same regularization procedure



(more details in the parallel session talk of A. Paraskevopoulou)

$$a_{9,M}^{(1)} \simeq \frac{2\pi}{r_{11}r_1} \sum_{\substack{(m,n) \neq (0,0)}} \int_{\epsilon}^{\infty} \frac{dt}{t^{3/2}} e^{-\pi t \left(\frac{m^2}{r_{11}^2} + \frac{n^2}{r_1^2}\right)}$$

$$\frac{8\pi}{g_s} \sum_{\substack{m \neq 0 \ n \geq 1}} \sum_{n \geq 1} \left| \frac{m}{n} \right| K_1\left(2\pi |m| n \frac{\rho_1}{g_s}\right)$$

ED0 brane instanstons D string)

Emergence in dim=d

$$a_{8,M;M2}^{(1)} \simeq \underbrace{\frac{2\pi^2}{3}}_{R_{11}t_{12}} + \frac{8\pi}{r_{11}t_{12}} \sum_{n_1,n_2 \ge 1} \frac{1}{n_2} e^{-2\pi n_1 n_2 r_{11} t_{12}} = -\frac{2\pi}{T} \log\left(\left|\eta(iT)\right|^4\right)$$

The full amplitude from 1-loop Schwinger-integral!

- Full result for 7D, partial results d
- Transverse M2,M5 yield all instantons
- **Constrained Eisenstein series** $a_{d,M}^{(1)}(\text{transv}) = \mathscr{C}_{k(k)}^{E_{k(k)}}$ $\Lambda_{E_{k}} \oplus 1, s = \frac{k}{2} - 1$

For 8D, new sector with D2-branes and mass $M^2 = n^2 t_{12}^2 + \frac{m^2}{r_{11}^2}$

Particle states	Instantons
$(D0, \mathrm{KK}_{(k)})$	$ED0_{(k)}$
$(D2_{(ij)}, \mathrm{KK}_{(k)})$	$ED2_{(ijk)}$
$(NS5_{(ijklm)}, KK_{(n)})$	$ENS5_{(ijklmn)}$
$(D2_{(ij)}, D0)$	$EF1_{(ij)}$
$(NS5_{(ijklm)}, D0)$	$ED4_{(ijklm)}$
$(NS5_{(ijklm)}, D2_{lm})$	$ED2_{(ijk)}$

M-theoretic Emergence Proposal

Integrating out only the light towers in the infinite distance regime,

implies relation:

$$a_{d,M}^{(1)}(\text{transv}) = a_{d,M}^{(1)}(\text{transv} + \text{longi})$$
pert. $r_{11} \gg 1$ desert: $r_{11} = O(1)$
uli space with $M_{\text{pl}} = \text{const:}$
desert

 R^4 -term over IIA mod pert. string theory $g_s \ll 1$ $g_{s} = O(1)$ $a_{d} = \frac{c_{0}}{g_{s}^{2}} + \left(c_{1} + \mathcal{O}(e^{-S_{ws}})\right) + \mathcal{O}(e^{-S_{st}})$ $\mathcal{E}^{E_{k+1(k+1)}}$ $\Lambda_{E_{k+1}}, s = \frac{k}{2} - 1$ 1–loop

emergence!

proof for $d \ge 4$

[Bossard, Kleinschmidt (2015)]

[Bossard, Pioline (2016)]

pert. M-theory

 $\mathcal{L}^{E_{k(k)}}$ \mathcal{O} $\Lambda_{E_k} \oplus 1, s = \frac{k}{2} - 1$

emergence!

M-theoretic Emergence Proposal

potentially present compact direction

Ultimate test for kinetic terms:

In the infinite distance M-theory limit $M_*R_{11} \gg 1$ with the Planck scale kept fixed, a perturbative QG theory arises whose low energy effective description emerges via quantum effects by integrating out the full infinite towers of states with a mass scale parametrically not larger than the IID Planck scale. These are transverse M2-, M5-branes carrying momentum along the eleventh direction (D0-branes) and along any

- Emergence of Einstein-Hilbert term
- Space-time is emerging
- Prepotential for N=2 in 4D (1/2 BPS)

N=2 susy in 4D

Prepotential is 1/2 BPS saturated and enjoys an expansion

$$\mathcal{F}_0(T) = -\frac{1}{g_s^2} \left[\frac{1}{3!} \kappa_{ijk} T^i T^j T^k + \frac{\zeta}{3!} \right]$$

• determines kinetic terms for vector-multiplets

• Gopakumar-Vafa invariants $\alpha_0^\beta \in \mathbb{Z}$

$$\mathscr{F}_0 = \sum_{\beta} \alpha_0^{\beta} \sum_{n \in \mathbb{Z}} \int_0^{\infty} \frac{ds}{s^3} e^{-sZ_n(\beta)}, \quad \text{with}$$

- Type IIA compactified on a CY to 4D with N=2 susy: [Bhg, Cribiori, Gligovic, Paraskevopoulou (2023), 2309.11551]
 - (more details in the parallel session talk of A. Gligovic)
 - $\frac{\zeta(3)}{2}\chi(X) \sum_{\beta \in H_2(X,\mathbb{Z})} \alpha_0^\beta \operatorname{Li}_3\left(e^{-\beta \cdot T}\right) \bigg],$
- Gopakumar/Vafa: in the M-theory limit given by Schwinger integrals over D2-D0 bound states
 - ch central charge

$$Z_n(\beta) = \frac{2\pi}{g_s} \Big(\beta \cdot T + in\Big)$$

Applying the same regularization method as before:

for single g=0 curve (resolved conifold) $\mathcal{F}_0^{M2} = \frac{1}{g_s^2} \left[-\frac{(2\pi T)^3}{12} \right]$

compact CY : unsettled problem: regularization of sum

For CY with $h_{11} = 1$:

2

Gopakumar/Vafa approach

+
$$\operatorname{Li}_{3}(e^{-2\pi T}) - \zeta(3)$$
].

Alternative method via contour integration [Hattab, Palti 2312.15440] [Hattab, Palti 2404.05176]

n over
$$\beta \in H_2(X, \mathbb{Z})$$

$$\sum_{\beta=1}^{\infty} \beta^3 \alpha_0^{\beta} \Big|_{\text{reg.}}^{\ \ !!} \kappa_{111} \quad \dots \text{(stay tuned)}$$

Conclusions

- Motivated that in infinite distance limits perturbative QG theories arise
- Perturbative towers are those with a typical mass scale below $\tilde{\Lambda}$
- Provided evidence for the realization of the (strong) Emergence Proposal in M-theory limits by integrating out these full light towers of states
- Technically, we evaluated 1/2 BPS saturated one-loop Schwinger integrals providing a working regularization of the UV divergences

checked for string case

$$\int_{\mathscr{F}} \frac{d\tau^2}{\tau_2^{\frac{d-6}{2}}} = \sum_n \int_{\varepsilon}^{\infty} \frac{dt}{t^{\frac{d-6}{2}}} \delta(\text{BPS}) \Big|_{\text{reg}}$$

Outlook

- Collect more evidence from BPS amplitudes in theories with lower susy
- Non BPS amplitudes like 10D kinetic terms
 - \triangle Requires quantization of M-theory, i.e. include non-BPS states
 - \triangle Space-time itself has to emerge
 - \triangle **Problem:** susy might imply vanishing Schwinger integrals
 - Compute appropriate couplings, like 1-loop(!) graviton scattering in BFSS matrix model

 BFSS not complete (misses transverse M5): Can we learn anything new about quantization of M-theory?

