An Axion Cosm String Pheno 2024 Matt Reece, Harvard University

An Axion Cosmology Scenario

Introduction

Why Axions?

Bottom up model building:

- QCD axion solves the Strong CP problem
- Misalignment mechanism produces cold dark matter

Top down model building:

String constructions often predict axions

General principles:

- Axions as gauge fields for (-1)-form instanton number "symmetry"
- No free parameters in quantum gravity

Chern-Weil Global Symmetries

e.g., in d > 4 we have U(1) (d - 5)-form "instanton number symmetry":

$$\frac{1}{8\pi^2} d \left[tr(F \wedge F) \right] = 0 \quad \text{nor} \\ \text{ide}$$

Quantum gravity: often gauged by Chern-Simons terms $\frac{1}{8\pi^2}C_{d-4} \wedge \operatorname{tr}(F \wedge F)$. Sometimes **explicitly broken**, e.g., by monopoles.

For instance, for U(1),

$$dF = 2\pi j_{mor}$$

implies

$$\mathrm{d}(F \wedge F) \neq 0.$$

- Gauge theories intrinsically have symmetries connected to characteristic classes,
 - ows from the nabelian Bianchi $d_A F = 0$. entity

w/ Ben Heidenreich, Jake McNamara, Miguel Montero, Tom Rudelius, Irene Valenzuela arXiv:2012.00009 [hep-th] 4

Axions from Quantum Gravity Principles

In d = 4 the story is a bit different: $d\left[tr(F \wedge F)\right] = 0$ is trivial because this is a top form. Does a U(1) "(-1)-form symmetry" have nontrivial meaning?

One definition: such a symmetry \Rightarrow theory admits **consistent coupling to a** background axion $\theta(x)$.

Again this can be gauged — coupled to a dynamical axion — or broken, e.g., by monopoles, for which the Witten effect obstructs the coupling to $\theta(x)$.

Then "no (-1)-form symmetry in QG" closely related to "no free parameters in QG."

Rich story about monopoles, dyon modes, etc.

see my recent symmetry seminar "Instanton Number as a Symmetry"

w/ Daniel Aloni, Eduardo García-Valdecasas, Motoo Suzuki arXiv:2402.00117 [hep-th] and work in progress

Axion Models at a Glance

Pseudo-Nambu-G for 4d U(1)_{PQ}

"Pre-inflation" scenario

Quality problem

Isocurvature problem

Post-inflation PQ transition

Quality problem

Domain wall proble

Stable relic problem

Goldstone	Zero mode of gauge field in higher dimensions
lem	(Quality problem) Isocurvature problem
lem	Not possible (no linearly realized PQ symmetry to break)
e B	(maybe similar late-time physics fro other initial conditions?)

Post-Inflation Axion Cosmology

4d U(1) PQ symmetry spontaneously broken after inflation.

- Axion randomized, strings form (Kibble-Zurek)
- QCD phase transition: axion domain walls form
- String-wall network destroys itself $(N_{\rm DW} = 1)$

Axion dark matter relic abundance dominantly from axion emission from string network, as well as misalignment. Detailed simulations, e.g., Buschmann, Foster, Hook, Peterson, Willcox, Zhang, Safdi arXiv:2108.05368

Strings $(T > T_{osc})$

Figure from Ciaran O'Hare's lectures on axion cosmology, arXiv:2403.17697 [hep-ph] Using code from Alejandro Vaquero, Javier Redondo, Julia Stadler, arXiv:1809.09241

Post-Inflation: Axion Domain Wall Problem

Domain walls can end on strings if

$$\int \frac{k_G}{8\pi^2} \theta \operatorname{tr}(F \wedge F)$$

has minimal coupling $N_{\rm DW} = |k_G| = 1$.

But such strings may not form, or may not be elementary! Tension w/ models for quality problem

Composite string frustrated network

Hard to find **convincing models!**

 z^3

w/ Qianshu Lu, Zhiquan Sun arXiv:2312.07650 [hep-ph]

"Pre-Inflation": Axion Isocurvature Problem A light scalar during inflation fluctuates by $\delta \phi \sim H_I/(2\pi)$. Fluctuations independent of inflaton fluctuations \Rightarrow *isocurvature*, strongly constrained.

Figure from **Ciaran O'Hare's** lectures on axion cosmology, arXiv:2403.17697 [hep-ph]

Is a bound a problem? Not a sharp one, but the simplest and most natural inflation models are large-field (hence high-scale).

Leads to a bound

$$\lesssim 3 \times 10^7 \,\text{GeV} \, \frac{f_I}{10^{12} \,\text{GeV}}$$

which is much stronger than the observational bound from (lack of) tensor modes,

 $H_I \lesssim 10^{13} \,\mathrm{GeV}$.

Solutions to the Axion Isocurvature Problem

of H_I for a given axion decay constant. Broadly,

- Turn on larger $|\Phi|^2$ term during inflation back to post-inflation.
- **Dynamical axion mass**, heavier than H_I during inflation, e.g., make QCD very strongly coupled so $\Lambda_{\rm OCD}/f$ is not small. (Dvali '95, ...)

[Awkward to continuously change exponentially tiny number to O(1)!]

• **Dynamical axion decay constant**, $f_I \gg f_a$ to relax bound (Linde/Lyth '90, ...) String pheno: time-varying modulus can lead to both of the last two. **Rest of this talk:** a new variation on dynamical axion mass.

Several ideas have been discussed in the literature for opening up a wider range

Eliminating Axion Isocurvature: A New Approach

w/ Prish Chakraborty, Junyi Cheng, Zekai Wang expected to appear on arxiv this summer

Monodromy Mass vs. Isocurvature

An axion $\theta \cong \theta + 2\pi$ can get a large ("monodromy") mass from a Chern-Simons coupling to a 4-form field strength $F^{(4)} = dC^{(3)}$:

$$S = \int -\frac{1}{2} f^2 |d\theta|^2 - \frac{1}{2g^2} |F^{(4)}|^2 + \frac{n}{2\pi} \theta F^{(4)}, \quad n \in \mathbb{Z}.$$

[Kallosh, Linde, Linde, Susskind '95; Gabadadze '99; Silverstein, Westphal '08; Kaloper, Sorbo '08;]

Axion mass:

Main idea:

If $n \in \mathbb{Z}$ is a dynamical integer, it could be nonzero during inflation (heavy) axion, no isocurvature) and zero today (standard axion).

Change between them with a *first-order phase transition*.

$$m_{\hat{\theta}} = \frac{n}{2\pi} \frac{g}{f}$$

Avoiding confusion $S = \left[-\frac{1}{2} f^2 |d\theta|^2 - \frac{1}{2\sigma^2} \right]$

The monodromy potential $V(\theta)$ has infinitely many branches labeled by an integer $j = \frac{1}{e_4^2} \star F^{(4)} - \frac{n}{2\pi}\theta$, and a gauge invariance $\theta \mapsto \theta + 2\pi, j \mapsto j - n$.

j, the $C^{(3)}$ electric field, is **always dynamical**. It is **not** the dynamical integer n that we wish to change in cosmology.

Making *n* Dynamical

Idea: the integer n is flux of higher-dim

Extra-dimensional axion $\theta = \int_{\Lambda^{(p)}} C^{(p)}$

Chern-Simons in n = p + q + s + 1 extra dims:

$$\frac{1}{4\pi^2} \int_{M^{(4)} \times Y^{(n)}} C^{(p)} \wedge dA^{(q)} \wedge$$

nensional gauge field,
$$n = \frac{1}{2\pi} \int_{\Sigma^{(q+1)}} dA^{(q)}$$

 $1C^{(3+s)}$

Flux Tunneling

Our tunneling process must change th

(see, e.g., Blanco-Pillado, Schwartz-Perlov, Vilenkin '09, but details differ — we do *not* want a Freund-Rubin compactification, our flux is through a cycle in a larger geometry)

The flux
$$n = \frac{1}{2\pi} \int_{\Sigma^{(q+1)}} \mathrm{d}A^{(q)}.$$

This can only happen by nucleating a dynamical magnetically charged brane for $A^{(q)}$. This has 4 + n - q = 3 + r + s dimensions. Wrapping the r + s internal dimensions transverse to $\Sigma^{(q+1)}$, we have a **domain wall** in (3+1)d.

Bubble Mergers

Provided the n = 0 state has lowest vacuum energy, we expect colliding branes to reconnect and the $n \neq 0$ regions to collapse.

Flux Tunneling at the End of Inflation?

Need to suppress isocurvature: |n| > 0 during inflation. Drops to 0 after.

- Vacuum energy contribution V(n) from flux energy density: could that provide the energy driving inflation?
- "Graceful exit" problem of old inflation: need to make bubble nucleation rate time-dependent. $\Gamma(t) < H(t)^4$ until some critical time t_* . Scenarios:
- Inflaton ϕ affects $\Gamma(t)$, e.g., brane tension $\mathcal{T}(\phi)$ dynamical.
- Tunneling as inflation is ending, H(t) starts to drop rapidly.

$$S = \int -\frac{Z_n}{2} |d\phi|^2 - \frac{1}{2} f_n(\phi)^2 |d\theta|^2 - \frac{1}{2g_n(\phi)^2} |F^{(4)}|^2 + \frac{n}{2\pi} \theta F^{(4)} + V(\phi, n) + h(\phi) \mathcal{T}\delta^{(2)}(M)$$

String Theory Embedding?

All the *ingredients* exist in string theory, e.g.:

Type IIA model with D6 branes, $\theta = \int$ axion mass from $C^{(3)} \wedge dC^{(3)} \wedge H^{(3)}$.

The bubble wall is an NS5 brane wrapped on β .

Inside the wall: D6's wrapped on β for realizing Standard Model. **Outside the wall:** obstructed by $H^{(3)}$ flux on β .

Dynamical emergence of chirality after inflation? (Potential implications for baryogenesis, Festina Lente bound,)

$$\int_{\alpha} C^{(3)}$$
, dynamical integer $n = \int_{\beta} H^{(3)}$,

Conclusions

- Axions play an important role in quantum gravity.
- Conventional 4d QCD axion models face serious cosmological challenges.
- Extra-dimensional axions primarily face the axion isocurvature problem: difficult to combine with high-scale inflation.
- Possible scenario: time-dependent moduli fields after inflation change the value of the decay constant.
- Novel scenario: first-order phase transition from large tree-level axion mass during inflation to zero mass afterward. Implications for reheating, gravitational waves, and more. Can we find a realistic version of this scenario?