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Why	use	ML	in	string	theory?

• Build	string	vacuum	with	{Standard	Model,	dS,	scale	separation,	..}
• Can	ML	pick	good	geometries?	Speed	up	hard	computations?	Find	vacua?

• Swampland	program
• Can	ML	help	classify	UV-complete	effective	field	theories?	Or	test	conjectures?

• Numerics:	ML	for conformal	bootstrap,	ML	of	CY	metrics	
• Learn	mathematical	structures	(of	relevance	for	physics)
• Physics-inspired	models	to	explain	how	ML	works

… progress	on	all	of these topics,	driven	by	many researchers	
Reviews:	 Ruehle:20,		Bao,	He,	Heyes,	Hirst:22,	 Anderson,	Gray,	ML:23

• Talks	by	Stefano	Lanza,	Kit	Fraser-Taliente,	Justin	Tan,	Lucas	Tsun Yin	Leung,…



This	talk	in	a	nutshell
• ML	is	useful	for	CY	geometry
• Ricci	flat	metrics
• Hermitian	Yang-Mills	connections		
• Harmonic	representatives	

• ML	methods	work	for	
• generic	CY	manifolds
• at	given	point	in	moduli	space	

• Symmetries	can	be	encoded	using	invariant	ML	models
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CY	geometry:	Ricci	flat	metrics

CY	Theorem:	Let	𝑋	be	an	𝑛-dimensional	compact,	complex,	Kähler	
manifold	with	vanishing	first	Chern class.	
Then	in	any	Kähler	class	[𝐽],	𝑋	admits	a	unique	Ricci	flat	metric	𝑔().

• For	n>1,	no	analytical	expression	for	𝑔().	 K3:	Kachru-Tripathy-Zimet:18	

• Solve		𝑅+, 𝑔 = 0 4th order,	non-linear	PDE.	Very	hard.
• Equivalent	to	 2nd order	PDE	for	function	𝜙.

Hard,	but	may	solve	numerically	on	examples
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CY	geometry:	Ricci	flat	metrics

CY	Theorem:	Let	𝑋	be	an	𝑛-dimensional	compact,	complex,	Kähler	
manifold	with	vanishing	first	Chern class.	
Then	in	any	Kähler	class	[𝐽],	𝑋	admits	a	unique	Ricci	flat	metric	𝑔().

Kähler	form	𝐽()satisfies	
• 𝐽() = 𝐽 + 		𝜕�̅�𝜙	 same	Kähler class;	𝜙 is	a	function
• 𝐽() ∧ 𝐽() ∧ 𝐽() = 𝜅	Ω ∧ Ω7	 Monge-Ampere	equation	(𝜅	constant)

2nd order	PDE	for	𝜙
• Sample	points	on	CY;	compute	𝐽, Ω, 𝜅;	solve	MA	eq numerically
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Numerical	CY	metrics

Algebraic	CY	metrics

• 𝐾: 𝑧, 𝑧̅ =
<
:
∑ ln𝐻ABC𝑝A�̅�B

C�
�

𝑝A	spectral basis	(polynomials)
• Solve	for	𝐻ABC using

• Donaldson	algorithm
Donaldson:05,	Douglas-et.al:06,	
Douglas-et.al:08,	Braun-et.al:08,	
Anderson-et.al:10,	...	

• Functional	minimization
Headrick–Nassar:13,	Cui–Gray:20,	
Ashmore–Calmon–He–Ovrut:21

• … or	machine	learning
Anderson–et.al:20,	Gerdes–
Krippendorf:22,	

Machine	Learning	CY	metrics
• Neural	Networks	are	universal	
approximators

Cybenko:89, Hornik:91,
Leshno et.al:93, Pinkus:99,…

• Train	ML	model to	approximate	
CY	metric,	or	Kähler	potential

Ashmore–He–Ovrut:19,	
Douglas–Lakshminarasimhan–Qi:20,	
Anderson–et.al:20,	
Jejjala–Mayorga–Pena:20	,	
ML-Lukas-Ruehle-Schneider:21,	22
Ashmore–Calmon–He–Ovrut:21,22,	
Berglund-et.al:22	,	Halverson-
Ruehle:23, Douglas-Platt-Qi-24
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1.	Generate	a	point	sample	
On	example	CY	need	random	set	of	points,		sampled	w.r.t.	known	measure

Leading	algorithm:	CY	is	hypersurface	in	ℙG Douglas	et.	al:	06		
• Sample	2	pts	on	ℙG,	connect	with	line	&	intersect	à 𝑛 + 1 pts
• Shiffman-Zelditch theorem:	distributed	w.r.t.		𝑑𝑣𝑜𝑙MN

Generalizes to	CICYs and	CYs	from	Kreuzer-Skarke	list
Douglas	et.al:	07,			ML,	Lukas,	Ruehle,	Schneider:	21,22

• Fast	point	generators	included	in	ML	packages
MLgeometry,	cymetric,	cyjax

7



2.	Set	up	the	ML	model

Architectural	choices
• What	to	predict?
• Encode	constraints	in	NN	or	loss?
(global,	complex,	Kähler…)
• Flexibility vs.	precision

8

Moduli
Point	sample 𝐽(), 𝑔(), 𝜙

input
layer

hidden layer

output
layer



3.	Train	the	ML	model

Architectural	choices
• What	to	predict?
• Encode	constraints	in	NN	or	loss?

Then	train	
• … i.e.	adapt	layer	weights	to	minimize	
loss	functions
• Stochastic	gradient	descent	
• ML	libraries	w.	highly	optimized	
automatic	differentiation	
TensorFlow,	JAX,	PyTorch
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Loss	functions	encode	math	constraints

• Train	the	network	to	get	unknown	Ricci-flat	metric	(in	given	Kähler	class)
• Use	semi-supervised	learning

1. Encode	mathematical	constraints	as	custom	loss	functions
2. Train	network	(adapt	layer	weights)	to	minimize	loss	functions

• Satisfy	Monge-Ampere	eqàminimize	Monge-Ampere	loss

• Free	metric	ansatz	àmore	loss	functions	(Kähler,	transition,	K-class)

Learning CY metrics with cymetric

Custom loss terms controls learning - user chooses ↵i

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LK-class.

LMA =
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4.	Check	accuracy

• After	training,	check	that	MA	eq holds	and	Ricci	tensor	is	zero

• Checking	topological	quantities,	like	volume	and	line	bundle	slopes,	
ensures	metric	prediction	has	good	global	properties	.
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Error Measures

After training, evaluate performance (on separate test set):

does the MA equation hold? is the metric Ricci flat?

Check via established benchmarks:
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Experiments:	Fermat	vs.	generic	quintic

Monge-Ampere	loss Error	measures
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Fermat Generic GenericFermat

cymetric,	𝜙-model,	100	000	points,	3	64-node	layers,	
GELU,	default	loss	parameters,	Adam,		batch	(64,	50000)

Anderson,	Gray,	ML:23

ML	methods	are	less	sensitive	to	symmetry



Experiments:	KS	CY	example

• ℎ<,< = 2,	ℎV,< = 80	hypersurface	from	Kreuzer-Skarke database

cymetric,	toric 𝜙-model,	default	loss,	200	000	points

NN	width	256,	depth	3,	GELU,	batch	(128,	10000),	SGD	w.	momentum
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ML,Lukas,	Ruehle,Schneider:22

ML	methods	work	on	
both	CICY	and	KS	CYs



Accuracy	and	benchmarks

Accuracy improves	with
• Larger	point	sample
• Wider/deeper	NN
• Train	longer
and/or	
• Change	model	architecture
• cymetric 𝜙-model	+	Spectral	Layer		

Berglund	et	al:22,	Butbaia et	al:24	
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Figure 4: The first 36 massive eigenmodes (averaged per multiplet with error bars corresponding to one
standard deviation) as we vary the number of points for the FS and the exact CY metric, compared to
the analytic result.

4.2 Spectrum

Next, we compute the spectrum numerically, varying the number of points np, the complex structure
parameter  and the number k� of the basis functions in which we expand the Laplacian eigenfunctions.
We perform all computations for the pullback of the FS metric (which is the lowest-order approximation
to the CY metric in the sense of Donaldson’s algorithm [18]) and for the exact CY metric (obtained
from |⌦|

2, which is proportional to the determinant of the metric, and hence to the metric itself for
one-folds) to see the influence of choosing various qualities of approximations to the CY metric. In all
cases, we can compare the approximate result to the analytic result (18) to quantify the error of the
approximation.

Varying the number of points

To study the influence of the number of points, we choose np 2 {1, 000, 10, 000, 100, 000}. We present the
results for each of the first 36 massive eigenmodes (the single massless mode is omitted from the plot)
in Figure 4. These 36 eigenmodes fall into various irreps under the symmetry group, such that there
are 11 distinct eigenvalues. For each eigenvalue, we plot the spectrum as computed with respect to the
exact CY metric obtained from |⌦|

2 (labeled CY in the plot), the analytic result computed from (18),
and the spectrum computed on the CY hypersurface when using the pullback of the ambient space FS
metric as a proxy for the exact CY metric. For the plot, we fix the other parameters like k� = 3 and
 = �1. The error bars represent 95 percent confidence intervals for multiplets with multiplicity larger
1. The di↵erent colors represent the three di↵erent choices for the number of points used to compute
the spectrum.

From the plot, we can make the following two observations. First, the metric dependence is rather weak.
In particular, the error we get from using the FS metric is often comparable to the error we get for the
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Application:	Heterotic	Standard-Like	Models

Building	blocks	
• Ricci-flat Calabi Yau manifold	𝑋
• Vector	bundle	𝑉	satisfying		Hermitian	Yang-Mills	eq.
• Discrete	symmetry	group	𝐺	(break	GUT)	

• Many	examples! E.g.	35	000	SLMs	found	with	𝑉 =⊕ 𝐿+
Anderson	et.al:11,12,13,	…
with	RL/gen.alg.			ML-Schneider:20,	 Constantin	et.al:	21, Abel	et	al:21,23,…

• Next	step	toward	SM:	compute	normalized	Yukawa	couplings
Butbaia-et.al:24,	Constantin-et.al:24
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Application:	Heterotic	Standard-Like	Models

Building	blocks
• Ricci-flat	Calabi Yau manifold	𝑋
• Vector	bundle	satisfying		HYM	eq.
• Discrete	symmetry	𝐺 ↝ smooth	quotient	CY	𝑋/𝐺
• allows	to	break	GUT	using	Wilson	lines
• symmetries:	permutations,	discrete	phase	rotations,	shifts	of	input	𝑧+

• How can we restrict the	model prediction to	group invariant	metrics?
• Can we use ML	for	Ricci	flat	metric on	quotient CY?
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ML	𝐺-invariant	CY	metrics

• Let	𝑋 be	smooth	CY,	 𝐺 symmetry,	𝑔() = 𝑔MN + 	𝜕�̅�𝜙	
• ML	model	which	approximates	𝜙(𝑧) is	𝐺-invariant	if

𝜙 𝑔 ⋅ 𝑧 = 𝜙(𝑧)
• With	spectral	basis,		𝜙	 invariant	if	expanded	in	invariant	polynomials
Donaldson:05,	Headrick-Nassar:13,	Douglas	et	al:08,	…

• For	ML,	any	𝐺-invariant	layer	makes	model	invariant
• Invariant	NNs	are	Universal	approximators for	invariant	functions	Yarotsky:22,..
• Invariant	ML	models	can	be	constructed	in	many	ways
• Geometric	Deep	Learning:	symmetry,	performance	&	interpretability
Bronstein	et	al:17,21,..
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Invariance	through	non-trainable	layers

input
layer invariant layer

hidden layers

output
layer

• Expand	input	in	group	
invariant	polynomials		
Yarotsky:22
↝ Spectral	layer
• G-canonicalization:	
Invariant	layer	projects	
input	to	fundamental	
domain	of	𝐺
Aslan,	Platt,	Sheard:22,	Kaba et.al.	23
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Invariance	through	non-trainable	layers

G-canonicalization:	
• Invariant	layer	projects	
data	to	fundamental	
domain	of	𝐺
• Modular	and	stackable
(given	compatibility	
condition)
• Easily	included	in	ML	
models	for	CY	metrics
(we	use	cymetric)

19

input
layer G1 G2 G3

hidden layers

output
layer

Hendi,	ML,	Walden:24	(work	in	progress)



CY	metric	on	smooth	quintic quotient

• Ricci-flat	metric	on	𝑋/ℤVV

• Symmetries (shifts and	phase rotation)	act freely
• 𝜙-model	of	cymetric with	2	canonicalization	layers	

20

Hendi,	ML,	Walden:	24	(work	in	progress)

Figure 6: Performance of di↵erent ML models on a 4-generation quintic. From left to right: Monge-
Ampère, Ricci, and transition loss evolution on test data; volume computed with trained metric
on all data (ground truth is 5). The upper (lower) row shows dense (spectral) networks with and
without G-canonicalization layers.

In this section, we revisit the computation of the Ricci-flat CY metric on Q using the methods
introduced in section 4. We thus encode the G-invariance as non-trainable layers in the �-model of
cymetric , and compare the performance of these invariant ML models with the standard dense
counterpart, as well as spectral networks.

We implement the canonicalization layers as follows. Let Gi ⇢ G be the subgroup generated
by the generator gi for i = 1, 2. Then, by projecting on the fundamental domains of G1 and
G2 consecutively, we construct an invariant function on X w.r.t G or, in other words, a function
on the smooth quotient Q = X/G. A technical complication, compared to the Fermat quintic
canonicalization layers of Sec. 5.1 is that we need to address the non-commutativity of G1 and
G2. This can be resolved by inserting the homogeneous canonicalization layer before the other
G-canonicalization layers; g1 and g2 commute up to homogeneous rescalings.

The fundamental domains of G1 and G2 are given by

F1 := {[z0 : z1 : z2 : z3 : z4] 2 CP4
| 8i : |z0| � |zi|}, (26)

F2 := {[z0 : z1 : z2 : z3 : z4] 2 CP4
| 0  arg(z0)  2⇡/5}. (27)

To project on the fundamental domains F1 and F2, we implement two canonicalization layers that
take the homogeneous coordinates [z0 : z1 : z2 : z3 : z4] of a point on X and for the first layer it
returns them shifted to the left such that the coordinate with the highest norm sits at the first
spot, as follows

hshift : (z0, z1, z2, z3, z4) 7!(zi, z(i+1 mod 5), z(i+2 mod 5), z(i+3 mod 5), z(i+4 mod 5)),

8j |zi| � |zj |.

For the second canonicalization layer, we find the fifth root of unity a such that 0  arg(az0)  2⇡/5
and then multiply the rest of the coordinates with successive powers of a as follows,

hFreeRootsc. : (z0, z1, z2, z3, z4) 7! (az0, a
2z1, a

3z2, a
4z3, z4).

Our experiments run over 50 epochs with the same settings as in section 5. The results on
test data are shown in Fig. 6 (we omit the training plots which are more or less identical to
the test plots). Just as observed in other experiments, including a homogeneous canonicalization
layer, or a spectral layer, reduces the transition loss. The evaluation of Monge-Ampère and Ricci
loss on test data shows that canonicalization with respect to G1, G2 reduces the losses, albeit not
by a large factor.16 The reduction of the loss is more pronounced when G-canonicalization is
added to the dense model, than when similar additions are made in the spectral network. The

16
The spikes in the Ricci loss in the second plot of the top row in Fig. 6 are transient numerical fluctuations.
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Conclusion	and	outlook

• Can	learn	Ricci	flat	metrics	on	CICY	and	KS	CY	manifolds,	for	given	moduli.
• Mathematical	constraints:	encoded	in	NN	or	in	loss	functions
• Performant	ML	packages:	cymetric,	MLgeometry,	cyjax,…
• Architecture	determines	accuracy,	performance,	generality.	
Applications	and	generalizations

• Yukawa	couplings	Butbaia-et.al:24,	Constantin-et.al:24
• Swampland	distance	conjecture	Ashmore:20,	Ashmore	&	Ruehle:21	Ahmed	&	Ruehle:23
• Moduli-dependent	CY	metrics		Anderson-et.al:20,	Gerdes-Krippendorf:22
• Warped	CY	metrics,	G-structure	geometry
• (towards)	G2	metrics Douglas-Platt-Qi:24
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Additional	slides
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ML	models		- choice	of	architecture

1. Learn	metric
Anderson-et.al.:20,
Jejjala–Mayorga–Pena:20	
ML-Lukas-Ruehle-Schneider:21,	22

2. Learn	Kähler	potential	(𝜙)
Anderson-et.al.:20,	
Douglas–Lakshminarasimhan–Qi:20,
Ashmore–Calmon–He–Ovrut:21,22,
ML-Lukas-Ruehle-Schneider:21,	22,	
Berglund-et.al.:22	

3. Learn	Donaldson’s	H	matrix	
Anderson-et.al.:20,	
Gerdes–Krippendorf:22
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Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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Homogeneous	rescaling	invariance

• Often work with homogeneous coordinates of ambient	space
• Rescaling invariant		𝜙 𝑧 = 𝜙 𝜆	𝑧
• True	exactly for	algebraic	metric,	using	spectral	basis
Anderson	et	al	:	20,	Douglas	et	al	:	20,	Gerdes	&	Krippendorf:22,	...

• The	models	of	the	cymetric package	are	only	approximately	invariant.
• Combining	cymetric 𝜙 −model with	“spectral	layer”
gives	invariant	model
Berglund	et	al:22

25

where k·k1 denotes the L1 norm.
Furthermore, we want to ensure that � is a global function. Hence we define the transition loss

Ltransition =
1

d

X

(s,t)

����(t) � �(s)
���
1
, (6)

where s, t denote di↵erent patches and d denotes the number of patch transitions.
In the cymetric package, three more constraints are encoded as custom loss functions Li: the

Kähler constraint dJ = 0 gives LdJ, preserving the Kähler class is enforced by LKclass, and direct
encoding of the Ricci-flatness condition gives LRicci. Thus, in total, the loss function that the
network is trained to minimize is given by

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass . (7)

Here ↵i are tuneable hyperparameters of the model (default value ↵i = 1.0) that are set by the
user. In our experiments, we use the default values for ↵, and will also disable the Ricci loss, as
it is expensive to compute and encodes the same condition as the MA-loss. We refer the reader
to [22, 23] for more discussions of the loss functions.

As a final comment, it may appear counter-intuitive to enforce the Kähler loss on the �-model,
which automatically encodes a Kähler metric (provided that the prediction � is a globally defined
function). Simularly, it appears unnecessary to train against the transition loss function once
the network is invariant under homogeneous rescalings, due to the non-trainable layers we will
introduce below. However, keeping these loss functions active does not seem to negatively a↵ect
performance. It may also be that the losses act as regulators for the model, and helps to keep the
prediction globally defined. Also, we can detect the invariance of the model by the vanishing of
the loss function.

3.3 Spectral layers

The spectral network, introduced in [25], repackages the input data of the �-model of the cymetric
package in a form that is manifestly invariant under homogeneous rescalings of the ambient space
coordinates. The motivation for this feature engineering step is to ensure that the learned function
� is globally well defined. Recall that this is only enforced ”softly”, by a loss function, in the
cymetric package. As a consequence, the network may predict line bundle sections rather than
globally defined functions. An observed ill consequence of this is the discrepancy of topological
quantities computed with the predicted Ricci flat metric [25], which becomes particularly noticeable
for singular, or nearly singular, CY spaces.

It may nevertheless appear surprising that such feature engineering is needed. The homogeneous
rescaling is not a symmetry of the CY manifold; this is a complex, n-dimensional space with n
holomorphic coordinates. However, as we have described in the previous section, the input data
of the cymetric models is not an n-dimensional complex tuple. Rather, for a CICY with ambient
space CPn1 ⇥ ..⇥CPnk , the point generators of cymetric produces

P
i 2(ni + 1)-dimensional real

input data tuples (with entries in the range [0, 1]). In this preprocessing the points on the CY
space are separated in to coordinate patches (that overlap but for zero measure sets). The training
is then done locally, using the transition loss function to impose that the function match on patch
overlaps. It is an empirical fact that the transition loss function is around 10�3 for standard �-
models (trained for 10 epochs on the Fermat quintic). As we will see in section 5, with the addition
of a spectral layer in the network, the transition loss function is of the order 10�9, which indicates
the prediction of � is indeed a function.

I’ve reread the Berglund paper, and I now think what we describe is basically their implemen-
tation, so I say so in this paragraph The e↵ect of the spectral layer is thus to impose invariance
under homogeneous rescalings. Following Ref. [25] (see also [39]), we have encoded the layer as
follows.11 For a CY with ambient space CPn, the spectral layer is a map

SpectralLayer : (z0, . . . , zn) 7!

0
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CCCCCA

11
This encoding shows the relation between the spectral layers and the bihomogeneous layers of [19]; they are

essentially related by a division by the norm. However, the bihomogenous layers have trainable weights, whereas

the spectral layer is non-trainable.
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Application:	Heterotic	Standard-Like	Models

Building	blocks
• Ricci-flat	Calabi Yau manifold	𝑋
• Vector	bundle	𝑉	satisfying	
Hermitian	Yang-Mills	eq.

𝐹 ∧ 	Ω = 0 = 	𝐹 ∧ 𝐽 ∧ 𝐽
• Discrete	symmetry	(break	GUT)	

• Hard	differential	equation.	
Requires	𝑔()
• Solution	exists	iff 𝑉 is	polystable
Donaldson:85,	Uhlenbeck–Yau:86	

• Can	solve	numerically…
Douglas	et.al.:06	Anderson	et.al:10,11

• … with	ML
Ashmore–Deen–He–Ovrut:21
ML-Lukas-Ruehle-Schneider:22,
Butbaia et.al:24,	Constantin	et.	al:24
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• Next	step:	compute	normalized	Yukawa	couplings
See	talks	by	Cristoforo	Fraser-Taliente and	Justin	Tan


