Natural Standard Model-like theories from E_7 flux breaking in F-theory: features and challenges

> String Phenomenology 2024 Padua, Italy June 26, 2024

Washington (Wati) Taylor, MIT

Outline

1. SM-like models from rigid E_7 flux breaking in F-theory

2. Features

3. Issues

Based on work with Shing Yan (Kobe) Li: 2112.03947, 2207.14319, 2401.00040

+ works in progress with Wang/Yu, Jefferson/Li

白 ト イヨ ト イヨト

Outline

1. SM-like models from rigid E_7 flux breaking in F-theory

2. Features

3. Issues

Based on work with Shing Yan (Kobe) Li: 2112.03947, 2207.14319, 2401.00040

+ works in progress with Wang/Yu, Jefferson/Li

Image: Image:

1. SM-like models from rigid E_7 flux breaking in F-theory

F-theory: Nonperturbative formulation of type IIB string theory

Dictionary for geometry ↔ physics [Vafa, Morrison-Vafa]

~ compactification of IIB on compact Kähler (non-CY) space B (e.g. \mathbb{P}^n) B_2 (complex surface) \rightarrow 6D, $B_3 \rightarrow$ 4D.

Defined by Weierstrass model (fiber $\tau = 10D$ IIB axiodilaton)

 $y^2 = x^3 + fx + g$, f, g "functions" on B_2

Elliptic fibration: $\pi : X(CY) \to B$, $\pi^{-1}(p) \cong T^2$, for general $p \in B$

Fiber singularities \rightarrow

Gauge group G (codimension 1 in B) [Kodaira: resolution \rightarrow affine Dynkin]

Matter (codimension 2 in *B*)

1. SM-like models from rigid E_7 flux breaking in F-theory

F-theory: Nonperturbative formulation of type IIB string theory

Dictionary for geometry ↔ physics [Vafa, Morrison-Vafa]

~ compactification of IIB on compact Kähler (non-CY) space *B* (e.g. \mathbb{P}^n) *B*₂ (complex surface) \rightarrow 6D, *B*₃ \rightarrow 4D.

Defined by Weierstrass model (fiber $\tau = 10D$ IIB axiodilaton)

$$y^2 = x^3 + fx + g$$
, f, g "functions" on B_2

Elliptic fibration: $\pi : X(CY) \to B$, $\pi^{-1}(p) \cong T^2$, for general $p \in B$

Fiber singularities \rightarrow

Gauge group G (codimension 1 in B) [Kodaira: resolution \rightarrow affine Dynkin]

Matter (codimension 2 in *B*)

1. SM-like models from rigid E_7 flux breaking in F-theory

F-theory: Nonperturbative formulation of type IIB string theory

Dictionary for geometry ↔ physics [Vafa, Morrison-Vafa]

~ compactification of IIB on compact Kähler (non-CY) space *B* (e.g. \mathbb{P}^n) *B*₂ (complex surface) \rightarrow 6D, *B*₃ \rightarrow 4D.

Defined by Weierstrass model (fiber $\tau = 10D$ IIB axiodilaton)

$$y^2 = x^3 + fx + g$$
, f, g "functions" on B_2

Elliptic fibration: $\pi : X(CY) \to B$, $\pi^{-1}(p) \cong T^2$, for general $p \in B$

Fiber singularities \rightarrow

Gauge group *G* (codimension 1 in *B*) [Kodaira: resolution \rightarrow affine Dynkin]

・ 同 ト ・ ヨ ト ・ ヨ ト

Matter (codimension 2 in B)

э.

There are many different ways the standard model may be realized in F-theory

	GUT	$(\mathrm{SU}(3)\times \mathrm{SU}(2)\times \mathrm{U}(1))(/Z_6)$
Tuned G	Tuned GUT (e.g., $SU(5)$)	Direct tuned G _{SM}
Rigid G	Rigid GUT (e.g., E_6, E_7)	Rigid $G_{\rm SM}$

• Much work: tuned GUT e.g. SU(5) [Beasley/Heckman/Vafa, Donagi-Wijnholt]

• Can tune G_{SM} directly (e.g. "F₁₁" fibers, "quadrillion SM") [Klevers/Mayorga Peña/Oehlmann/Piragua/Reuter, Cvetič/K/MP/O/R, Raghuram/WT/Turner, Cvetič/Halverson/Lin/(Liu/Tian, Long), Jefferson/WT/Turner]

Tuned models are rare in landscape, however: require tuning many moduli, many bases will not support

• SU(3) × SU(2) can be rigid/geometrically non-Higgsable in 4D [Grassi/Halverson/Shaneson/WT]; U(1) factor difficult however to integrate

Most natural approach: rigid/non-Higgsable GUT

▲□→ ▲ ヨ → ▲ ヨ →

There are many different ways the standard model may be realized in F-theory

	GUT	$(\mathrm{SU}(3)\times \mathrm{SU}(2)\times \mathrm{U}(1))(/Z_6)$
Tuned G	Tuned GUT (e.g., $SU(5)$)	Direct tuned G _{SM}
Rigid G	Rigid GUT (e.g., E_6, E_7)	Rigid $G_{\rm SM}$

- Much work: tuned GUT e.g. SU(5) [Beasley/Heckman/Vafa, Donagi-Wijnholt]
- Can tune *G*_{SM} directly (e.g. "*F*₁₁" fibers, "quadrillion SM") [Klevers/Mayorga Peña/Oehlmann/Piragua/Reuter, Cvetič/K/MP/O/R, Raghuram/WT/Turner, Cvetič/Halverson/Lin/(Liu/Tian, Long), Jefferson/WT/Turner]

Tuned models are rare in landscape, however: require tuning many moduli, many bases will not support

• SU(3) × SU(2) can be rigid/geometrically non-Higgsable in 4D [Grassi/Halverson/Shaneson/WT]; U(1) factor difficult however to integrate

Most natural approach: rigid/non-Higgsable GUT

There are many different ways the standard model may be realized in F-theory

	GUT	$(\mathrm{SU}(3)\times \mathrm{SU}(2)\times \mathrm{U}(1))(/Z_6)$
Tuned G	Tuned GUT (e.g., $SU(5)$)	Direct tuned G _{SM}
Rigid G	Rigid GUT (e.g., E_6, E_7)	Rigid $G_{\rm SM}$

- Much work: tuned GUT e.g. SU(5) [Beasley/Heckman/Vafa, Donagi-Wijnholt]
- Can tune *G*_{SM} directly (e.g. "*F*₁₁" fibers, "quadrillion SM") [Klevers/Mayorga Peña/Oehlmann/Piragua/Reuter, Cvetič/K/MP/O/R, Raghuram/WT/Turner, Cvetič/Halverson/Lin/(Liu/Tian, Long), Jefferson/WT/Turner]

Tuned models are rare in landscape, however: require tuning many moduli, many bases will not support

• SU(3) × SU(2) can be rigid/geometrically non-Higgsable in 4D [Grassi/Halverson/Shaneson/WT]; U(1) factor difficult however to integrate

Most natural approach: rigid/non-Higgsable GUT

▲圖 → ▲ 臣 → ▲ 臣 → □

Breaking $E_7 \rightarrow G_{\text{SM}}$ [Li/WT, arXiv:2112.03947, 2207.14319, 2401.00040]

 E_7 arises naturally in many geometries as a rigid gauge group [Morrison/WT] Can break gauge group with fluxes ϕ :

$$\Theta_{IJ} = \int_{S_{IJ}} G = M_{(IJ)(KL)} \phi^{KL} \,.$$

When $\Theta_{i\alpha} \neq 0$, breaks Cartan generator i; $\sum_{i} c_i \Theta_{i\alpha} = 0 \forall \alpha$ preserves U(1), etc.

Can choose fluxes to break i = 3, 4, 5, 6 for any geometric E_7 , leaving $SU(3) \times SU(2)$

Note: this realization of $SU(3) \times SU(2)$ is unique up to E_7 automorphism Depending on fluxes, preserve different U(1) factors, different spectra – Many $SU(3) \times SU(2) \times U(1)$ breakings, but most have exotics

Intermediate SU(5) and remainder hypercharge flux breaking

To avoid exotic chiral matter, any appropriate $U(1) \rightarrow SU(5)$ enhancement! (flux vanishes on an additional \mathbb{P}^1 ; equivalent to $\Theta_{3\alpha} = 0$)

Proceed in two steps: 1) Vertical flux breaking $E_7 \rightarrow SU(5)$, 2) Remainder flux breaking $SU(5) \rightarrow G_{SM}$

(~ [Beasley/Heckman/Vafa, Donagi-Wijnholt, Blumenhagen/Grimm/Jurke/Weigand, Marsano/Saulina/Schafer-Nameki, Grimm/Krause/Weigand, ...])

Remainder flux:

$$G_4^{\mathrm{rem}} = [D_Y|_{C_{\mathrm{rem}}}],$$

where $D_Y = 2D_1 + 4D_2 + 6D_3 + 3D_7$ generates hypercharge.

 C_{rem} is a curve on Σ , homologically trivial in *B*. Such curves exist on some (typical?) non-toric bases [Braun/Collinucci/Valandro]

Matter content with this breaking contains only SM family

$$(\mathbf{3},\mathbf{2})_{1/6}\,,\quad (\mathbf{3},\mathbf{1})_{2/3}\,,\quad (\mathbf{3},\mathbf{1})_{-1/3}\,,\quad (\mathbf{1},\mathbf{2})_{1/2}\,,\quad (\mathbf{1},\mathbf{1})_{1}\,,$$

arising from (non-chiral) E_7 representations 56 and 133, \Box , $(\Box$, (\Box) ,

Intermediate SU(5) and remainder hypercharge flux breaking

To avoid exotic chiral matter, any appropriate $U(1) \rightarrow SU(5)$ enhancement! (flux vanishes on an additional \mathbb{P}^1 ; equivalent to $\Theta_{3\alpha} = 0$)

Proceed in two steps: 1) Vertical flux breaking $E_7 \rightarrow SU(5)$,

2) Remainder flux breaking $SU(5) \rightarrow G_{SM}$

(~ [Beasley/Heckman/Vafa, Donagi-Wijnholt, Blumenhagen/Grimm/Jurke/Weigand, Marsano/Saulina/Schafer-Nameki, Grimm/Krause/Weigand, ...])

Remainder flux:

$$G_4^{\text{rem}} = \left[D_Y |_{C_{\text{rem}}} \right],$$

where $D_Y = 2D_1 + 4D_2 + 6D_3 + 3D_7$ generates hypercharge.

 C_{rem} is a curve on Σ , homologically trivial in *B*. Such curves exist on some (typical?) non-toric bases [Braun/Collinucci/Valandro]

Matter content with this breaking contains only SM family

$$(\mathbf{3},\mathbf{2})_{1/6}\,,\quad (\mathbf{3},\mathbf{1})_{2/3}\,,\quad (\mathbf{3},\mathbf{1})_{-1/3}\,,\quad (\mathbf{1},\mathbf{2})_{1/2}\,,\quad (\mathbf{1},\mathbf{1})_{1}\,,$$

- 2. Features of $E_6, E_7 \rightarrow G_{SM}$ flux construction
- Explicit examples in papers.
- Natural: many bases have rigid E_7 (more below)
- Flux breaking of GUT E_7 without its own chiral matter
- Higgs sector and chiral matter naturally separated (more below)
- No chiral exotics for certain breaking pattern with intermediate SU(5)
- Chiral multiplicity is naturally small from tadpole/χ.
 (3 arises very naturally as solution of linear Diophantine eqs.)
- Proton decay enabling Yukawa couplings naturally suppressed by broken U(1) factors (more below)

• Does not work for *E*₈, but maybe from SCFT matter? [Tian/Wang]

・ 同 ト ・ ヨ ト ・ ヨ ト

- 2. Features of $E_6, E_7 \rightarrow G_{SM}$ flux construction
- Explicit examples in papers.
- Natural: many bases have rigid E_7 (more below)
- Flux breaking of GUT E_7 without its own chiral matter
- Higgs sector and chiral matter naturally separated (more below)
- No chiral exotics for certain breaking pattern with intermediate SU(5)
- Chiral multiplicity is naturally small from tadpole/χ.
 (3 arises very naturally as solution of linear Diophantine eqs.)
- Proton decay enabling Yukawa couplings naturally suppressed by broken U(1) factors (more below)
- Does not work for *E*₈, but maybe from SCFT matter? [Tian/Wang]

-

< 同 > < 回 > < 回 > -

Feature: Natural separation of Higgs and chiral matter

 $\Sigma = 7$ -brane locus supporting $E_7 \rightarrow G_{SM}$ (133 of E_7)

 $C = C_{56} = -\Sigma \cdot (4K_B + 3\Sigma) = \text{matter curve for } 56 \text{ of } E_7$

In principle 3 types of Yukawa couplings: $\Sigma\Sigma\Sigma$, ΣCC , CCC

Assume:

 $-K_{\Sigma}$ effective (e.g. dP Σ ; natural for rigid Σ) \Rightarrow no $\Sigma\Sigma\Sigma$ Yukawas (BHV I), $-C = \mathbb{P}^1$ (technical simplifications)

CCC: W. model has codim. 3 (4, 6) loci. Non-minimal singularities, not usual Yukawa (no singlet in **56**³). Extra flux ϕ_{ij} ([Jefferson/Li/WT wip]), likely strongly coupled matter; set $\phi_{ij} = 0$. (cf. [Achmed-Zade/Garcia-Extebarria/Mayrhofer])

Upshot: only ΣCC Yukawa couplings. Want Higgs on Σ , so chiral matter on C

No chiral matter from 133: constraint on flux parameters n_{α}

$$\chi^{133}_{(3,2)_{1/6}} = 2\Sigma \cdot (K_B + \Sigma) \cdot D_{\alpha} n_{\alpha} = 0$$

Easily satisfied (examples), separates physics of Higgs and chiral matter _ ,

Feature: Natural separation of Higgs and chiral matter

 $\Sigma = 7$ -brane locus supporting $E_7 \rightarrow G_{SM}$ (133 of E_7)

$$C = C_{56} = -\Sigma \cdot (4K_B + 3\Sigma) = \text{matter curve for } 56 \text{ of } E_7$$

In principle 3 types of Yukawa couplings: $\Sigma\Sigma\Sigma$, ΣCC , CCC

Assume:

 $-K_{\Sigma}$ effective (e.g. dP Σ ; natural for rigid Σ) \Rightarrow no $\Sigma\Sigma\Sigma$ Yukawas (BHV I), $-C = \mathbb{P}^1$ (technical simplifications)

CCC: W. model has codim. 3 (4, 6) loci. Non-minimal singularities, not usual Yukawa (no singlet in **56**³). Extra flux ϕ_{ij} ([Jefferson/Li/WT wip]), likely strongly coupled matter; set $\phi_{ij} = 0$. (cf. [Achmed-Zade/Garcia-Extebarria/Mayrhofer])

Upshot: only ΣCC Yukawa couplings. Want Higgs on Σ , so chiral matter on CNo chiral matter from **133**: constraint on flux parameters n_{α}

$$\chi^{133}_{(3,2)_{1/6}} = 2\Sigma \cdot (K_B + \Sigma) \cdot D_{\alpha} n_{\alpha} = 0$$

Easily satisfied (examples), separates physics of Higgs and chiral matter

Feature: Approximate global U(1) symmetries from E_7 suppress proton decay

U(1) charges (Y, b_4, b_5, b_6) :

$$\begin{split} \mathbf{56} &\rightarrow (\mathbf{1},\mathbf{1})_{0,5/2,2,3/2} + (\mathbf{1},\mathbf{1})_{0,5/2,2,1/2} + (\mathbf{1},\mathbf{1})_{0,5/2,1,1/2} + (\mathbf{1},\mathbf{1})_{1,3/2,1,1/2} \\ &+ (\mathbf{3},\mathbf{2})_{1/6,3/2,1,1/2} + \left(\bar{\mathbf{3}},\mathbf{1}\right)_{-2/3,3/2,1,1/2} + \left(\bar{\mathbf{3}},\mathbf{1}\right)_{1/3,1/2,1,1/2} + \left(\bar{\mathbf{3}},\mathbf{1}\right)_{1/3,1/2,0,1/2} \\ &+ \left(\bar{\mathbf{3}},\mathbf{1}\right)_{1/3,1/2,0,-1/2} + (\mathbf{1},\mathbf{2})_{-1/2,1/2,1,1/2} + (\mathbf{1},\mathbf{2})_{-1/2,1/2,0,1/2} + (\mathbf{1},\mathbf{2})_{-1/2,1/2,0,-1/2} \\ &+ \operatorname{conjugates}, \end{split}$$

[note: 3 types of
$$\bar{D} = (\bar{3}, 1)_{1/3}$$
 and $L = (1, 2)_{-1/2}$; similar for 133]

Yukawa couplings are suppressed unless neutral, e.g.

$$H_u Q \bar{U}: \quad (\mathbf{1}, \mathbf{2})_{1/2, -3, -2, -1} \times (\mathbf{3}, \mathbf{2})_{1/6, 3/2, 1, 1/2} \times (\bar{\mathbf{3}}, \mathbf{1})_{-2/3, 3/2, 1, 1/2}$$

Dimension 4 proton decay:

$$W \supset \alpha_1 Q L \bar{D} + \alpha_2 L L \bar{E} + \alpha_3 \bar{D} \bar{D} \bar{U}$$

would be CCC, absent or suppressed (\sim R-parity violating)

Feature: Approximate global U(1) symmetries from E_7 suppress proton decay

U(1) charges (Y, b_4, b_5, b_6) :

$$\begin{split} \mathbf{56} &\rightarrow (\mathbf{1}, \mathbf{1})_{0,5/2,2,3/2} + (\mathbf{1}, \mathbf{1})_{0,5/2,2,1/2} + (\mathbf{1}, \mathbf{1})_{0,5/2,1,1/2} + (\mathbf{1}, \mathbf{1})_{1,3/2,1,1/2} \\ &+ (\mathbf{3}, \mathbf{2})_{1/6,3/2,1,1/2} + \left(\bar{\mathbf{3}}, \mathbf{1}\right)_{-2/3,3/2,1,1/2} + \left(\bar{\mathbf{3}}, \mathbf{1}\right)_{1/3,1/2,1,1/2} + \left(\bar{\mathbf{3}}, \mathbf{1}\right)_{1/3,1/2,0,1/2} \\ &+ \left(\bar{\mathbf{3}}, \mathbf{1}\right)_{1/3,1/2,0,-1/2} + (\mathbf{1}, \mathbf{2})_{-1/2,1/2,1,1/2} + (\mathbf{1}, \mathbf{2})_{-1/2,1/2,0,1/2} + (\mathbf{1}, \mathbf{2})_{-1/2,1/2,0,-1/2} \\ &+ \operatorname{conjugates}, \end{split}$$

[note: 3 types of
$$\bar{D} = (\bar{3}, 1)_{1/3}$$
 and $L = (1, 2)_{-1/2}$; similar for 133]

Yukawa couplings are suppressed unless neutral, e.g.

$$H_u Q \bar{U}: \quad (\mathbf{1}, \mathbf{2})_{1/2, -3, -2, -1} \times (\mathbf{3}, \mathbf{2})_{1/6, 3/2, 1, 1/2} \times (\bar{\mathbf{3}}, \mathbf{1})_{-2/3, 3/2, 1, 1/2}$$

Dimension 4 proton decay:

$$W \supset \alpha_1 Q L \bar{D} + \alpha_2 L L \bar{E} + \alpha_3 \bar{D} \bar{D} \bar{U}$$

would be CCC, absent or suppressed (~ R-parity violating)

Proton decay, continued.

Dimension 5 proton decay: standard SUSY GUTs have

$$W \supset \lambda_1 T_u Q Q + \lambda_2 T_d Q L + M T_u T_d ,$$

 T_u, T_d = triplet Higgs. In E_7 models, last term absent/suppressed, partners T'_u, T'_d give triplets mass;

$$W \supset \lambda_1 T_u Q Q + \lambda_2 T_d Q L + M T_u T_d' + M T_u' T_d + m T_u T_d + m T_u' T_d',$$

 $m \ll M \sim M_{\text{GUT}} \rightarrow (m/M) QQQL/M$ probably safe (?)

Dimension 6: depends on mass, wavefunctions of broken gauge bosons, not really under control but plausibly suppressed within experimental bounds (?)

伺き くほき くほう

Comment on vector-like exotics

Vector-like exotics a standard issue for GUT models.

Choice of $C = \mathbb{P}^1$, $-K_{\Sigma}$ effective simplifies; no vector-like matter from *C* (56); avoids complications of general (~ root bundle) story [Bies/Mayrhofer/(Pehle)/Weigand, Bies/Cvetič/Donagi/Liu/Ong + subsets]

Expect vector-like matter is massive at KK/Planck scale, E_7 models give no obvious resolution of μ problem ($\mu H_u H_d$ suppressed like for triplets but similarly (inert) partners can give large masses). So light Higgs is still a puzzle.

For other vector-like exotics, $(\mathbf{3}, \mathbf{2})_{-5/6}$ would be problematic for proton decay, but mild flux tuning can remove (particularly simple if $C_{\text{rem}}^2 = -2$).

As shown by BHV, generally impossible to remove all vector-like exotics for SO(10) or bigger groups. But fortunately in this case, remaining exotics are largely inert due to residual U(1) approximate symmetries ...

Challenge/issue: How natural/ubiquitous are rigid E_7 factors?

To answer this question we need two things:

(A) A global picture of the set of B_3 's and/or elliptic CY4's

(B) A measure on that set.

Some progress on (A).

Lessons from 6D:

```
Pretty good handle on \{B_2\}:
```

65k toric B_2 ; > 50% have rigid E_6/E_7 [Morrison/WT]

Toric B_2 reasonably representative at least for $h^{2,1}(X) > 150$ [WT/Wang]

向 ト イ ヨ ト イ ヨ ト

Challenge/issue: How natural/ubiquitous are rigid E_7 factors?

To answer this question we need two things:

(A) A global picture of the set of B_3 's and/or elliptic CY4's

(B) A measure on that set.

Some progress on (A).

Lessons from 6D:

Pretty good handle on $\{B_2\}$:

65k toric B_2 ; > 50% have rigid E_6/E_7 [Morrison/WT]

Toric B_2 reasonably representative at least for $h^{2,1}(X) > 150$ [WT/Wang]

コット ヘリット ヘリン

Classification of B_3 less clear

[WT/Wang]: MC sampling of toric bases w/o codim 2 (4, 6) or E_8 factors: $\sim 20\%$ of $\sim 10^{50}$ bases have rigid E_7 factors. \Rightarrow many bases have rigid E_7 's

However, full number of bases (with triangulation, E_8 's, codim 2 (4, 6)) is $> 10^{750}$ by direct construction [Halverson/Long/Sung]

 $\sim 10^{3000}$ by Monte Carlo [WT/Wang]

A better measure may be polytopes (no triangulation) [WT/Wang/Yu wip]: $\sim 10^{60}$ from sampling Monte Carlo, but fraction with E_7 seems to decrease rapidly $\rightarrow 10^{-20}$? as $h^{1,1}$ increases.

Including singular bases up to flips/flops may give $\sim 10^{50000}$

Also, for CY4, we need non-toric (dominant?). Is there a systematic way to sample non-toric, even e.g. $B_3 =$ distinct toric hypersurface?

Which measure is more accurate?

-Discrete topologies are finite ([Di Cerbo/Svaldi])

-Does some tameness principle ([Grimm etc.]) lead to finite number of patches somehow, which might constrain distribution?

Classification of B_3 less clear

[WT/Wang]: MC sampling of toric bases w/o codim 2 (4, 6) or E_8 factors: $\sim 20\%$ of $\sim 10^{50}$ bases have rigid E_7 factors. \Rightarrow many bases have rigid E_7 's

However, full number of bases (with triangulation, E_8 's, codim 2 (4, 6)) is $> 10^{750}$ by direct construction [Halverson/Long/Sung]

 $\sim 10^{3000}$ by Monte Carlo [WT/Wang]

A better measure may be polytopes (no triangulation) [WT/Wang/Yu wip]: $\sim 10^{60}$ from sampling Monte Carlo, but fraction with E_7 seems to decrease rapidly $\rightarrow 10^{-20}$? as $h^{1,1}$ increases.

Including singular bases up to flips/flops may give $\sim 10^{50000}$

Also, for CY4, we need non-toric (dominant?). Is there a systematic way to sample non-toric, even e.g. B_3 = distinct toric hypersurface?

Which measure is more accurate?

-Discrete topologies are finite ([Di Cerbo/Svaldi])

-Does some tameness principle ([Grimm etc.]) lead to finite number of patches somehow, which might constrain distribution?

Challenge/issue: F-theory is not well defined

No non-perturbative definition of F-theory

- Holomorphy/algebraic geometry gives remarkably strong global picture
- Often defined as limit of M-theory
- IIB supergravity provides some insights, Sen limit perturbative
- Duality to heterotic when *B* is \mathbb{P}^1 -fibered
- String junctions give insights [Grassi/Halverson/Long/Shaneson/(Tian|Sung)]
- Special cases τ constant [Behan/Chester/Ferrero]

But despite all this we have no rigorous definition that could in principle enable precise analysis of quantitative features of F-theory, even given arbitrary computational abilities. [cf. Morrison: "What is F-theory, 1" wip]

We need some definition analogous to SFT or even string perturbation theory to compute quantities in a specific compactification to any precision.

Challenge/issue: F-theory is not well defined

No non-perturbative definition of F-theory

- Holomorphy/algebraic geometry gives remarkably strong global picture
- Often defined as limit of M-theory
- IIB supergravity provides some insights, Sen limit perturbative
- Duality to heterotic when *B* is \mathbb{P}^1 -fibered
- String junctions give insights [Grassi/Halverson/Long/Shaneson/(Tian|Sung)]
- Special cases τ constant [Behan/Chester/Ferrero]

But despite all this we have no rigorous definition that could in principle enable precise analysis of quantitative features of F-theory, even given arbitrary computational abilities. [cf. Morrison: "What is F-theory, 1" wip]

We need some definition analogous to SFT or even string perturbation theory to compute quantities in a specific compactification to any precision.

ロト・日本・モト・モー

Summary:

Rigid E_7 flux breaking gives a natural way of getting (SUSY) Standard Model-like theories from F-theory. Likely more numerous than any other explicit construction to date (e.g., many more bases with rigid E_7 than weak Fano). Some nice features like automatic suppression of proton decay.

But need better definition of F-theory to compute detailed low-energy physics. Need a better understanding of non-toric bases + measure to be more precise about naturalness.

4 3 5 4 3 5

Thank You!

ヘロ・ヘロ・ ヘヨ・ヘヨ・

Ξ.