String Phenomenology'24 Padova, June 24-28, 2024

Higher Global Symmetries from Nesting of Symmetry Theories

Mirjam Cvetič

Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*

Based on:

M.C., R. Donagi, J. Heckman, M. Hübner, E. Torres, UPR-1328-T, 2406...

Based on: 7 M.C., R. Donagi, J. Heckman, M. Hübner, E. Torres, UPR-1328-T, 2406... Based on:

M.C., R. Donagi, J. Heckman, M. Hübner, E. Torres, UPR-1328-T, 240 6...

[Also earlier work:
M.C., Heckman, Hübner, Torres, 2203.10102;
M.C., Heckman, Hübner, Torres, Zhang, 2305.09665;
M.C., Heckman, Hübner, Torres, 2307.1023...]

Symmetry Theories \rightarrow active subject c.f., Cordova's talk, Hackman's talk,...

Focus on new perspective → Nesting of Symmetry Theories

Symmetry Theories \rightarrow active subject c.f., Cordova's talk, Hackman's talk,...

Focus on new perspective → Nesting of Symmetry Theories

Apologies for unintentionally missed references...

1A) Introduction of Symmetry Topological Field Theories

1A) Introduction of Symmetry Topological Field Theories

Given a QFT in d-dim one can often isolate its symmetry structures into a topological field theory (TFT) in (d+1)-dim \rightarrow Introduction of the so-called Symmetry TFT (SymTFT)

[Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki, '21]

[Freed, Moore, Teleman, '22] [Kaidi, Ohmori, Zheng, '23]

1A) Introduction of Symmetry Topological Field Theories

Given a QFT in d-dim one can often isolate its symmetry structures into a topological field theory (TFT) in (d+1)-dim \rightarrow Introduction of the so-called Symmetry TFT (SymTFT)

> [Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki, '21] [Freed, Moore, Teleman, '22]

[Kaidi, Ohmori, Zheng, '23]

indicating physical boundary conditions (b.c.) at \mathcal{T}' and topological b.c. at \mathcal{B} for the SymTFT.

Many symmetry structures depend only on ${\mathcal B}$ and the TFT.

1B) Symmetry TFT (SymTFT) in isolation (by itself) S_{d+1}

SymTFT

1B) Symmetry TFT (SymTFT) in isolation (by itself) S_{d+1}

SymTFT

without edge modes, and not in the context of the initial QFT \rightarrow SymTFT is QFT in (d+1)-dim.

1B) Symmetry TFT (SymTFT) in isolation (by itself) S_{d+1}

SymTFT

without edge modes, and not in the context of the initial QFT \rightarrow SymTFT is QFT in (d+1)-dim.

Particularly natural perspective in the context of continuous global symmetries where SymTFT is not necessarily TFT anymore and replaced by SymTh. [Brennan, Sun,'24],[Antinucci, Benini, '24] [Bonetti, Del Zotto, Minasian, '24],[Apruzzi, Bedogna, Dondi, '24]...

1B) Symmetry TFT (SymTFT) in isolation (by itself) S_{d+1}

--SymTFT--* SymTh

without edge modes, and not in the context of the initial QFT \rightarrow SymTFT is QFT in (d+1)-dim.

Particularly natural perspective in the context of continuous global symmetries where SymTFT is not necessarily TFT anymore and replaced by SymTh. [Brennan, Sun,'24],[Antinucci, Benini, '24] [Bonetti, Del Zotto, Minasian, '24],[Apruzzi, Bedogna, Dondi, '24]...

1B) Symmetry TFT (SymTFT) in isolation (by itself) S_{d+1}

--SymTFT--* SymTh

without edge modes, and not in the context of the initial QFT \rightarrow SymTFT is QFT in (d+1)-dim.

Particularly natural perspective in the context of continuous global symmetries where SymTFT is not necessarily TFT anymore and replaced by SymTh. [Brennan, Sun,'24],[Antinucci, Benini, '24] [Bonetti, Del Zotto, Minasian, '24],[Apruzzi, Bedogna, Dondi, '24]...

1C) With 1B) we have returned to the starting point of 1A), so we can reiterate the procedure \rightarrow construct a SymTh in (d+2)-dim!

Adding: T_d from 1A)

``decompression" of S_{d+1}

2) Additional Motivation for Nesting of SymThs

Consider a QFT in D dim and 'insert' a defect QFT in d<D dim. What's the symmetry theory of the combined system?

2) Additional Motivation for Nesting of SymThs

Consider a QFT in D dim and 'insert' a defect QFT in d<D dim. What's the symmetry theory of the combined system?

with defect QFT in d-dim inserted.

(ii) KK reduce (i) to an open nested SymThs

2) Additional Motivation for Nesting of SymThs

Consider a QFT in D dim and 'insert' a defect QFT in d<D dim. What's the symmetry theory of the combined system?

Prototype Example (Isolated singularity): 3A) QFT $\mathcal{T}_{X_{loc}}$ with string theory construction on conical non-compact X^{loc}

[Del Zotto, Heckman, Park, Rudelius, '16] [Morrison, Schafer-Nameki, Willett, '20] [Albertini, Del Zotto, Etxebarria, Hosseini, '20]

Symmetry [M.C. Heckman, Hübner, Torres, '22] Operator[Garcia-Etxebarria, '22] [Apruzzi, Bah, Bonetti, Schäfer-Nameki, '22]..

Prototype Example (isolated singularity): 3A) QFT \mathcal{T}_{Xloc} with string theory construction on conical non-compact X^{loc}

[Del Zotto, Heckman, Park, Rudelius, '16] [Morrison, Schafer-Nameki, Willett, '20] [Albertini, Del Zotto, Etxebarria, Hosseini, '20]

Symmetry [M.C. Heckman, Hübner, Torres, '22] Operator[Garcia-Etxebarria, '22] [Apruzzi, Bah, Bonetti, Schäfer-Nameki, '22]..

Its SymTh follows via compactification over radial slices, resulting in 1A):

[Apruzzi, Bonetti, Garcia Etxebarria, Hosseini, Schäfer-Nameki, 2021] [Heckman, Hübner, Torres, Yu, Zhang, '22][van Beest, Gould, Schäfer-Nameki, Wang, '22] [Yu, '23] [Apruzzi, Bonetti, Gould, Schäfer-Nameki, '23] [Lawrie, Yu, Zhang, '23] [Del Zotto, Meynet, Moscrop, '24]...[Franco, Yu, '24]...

Prototype Example (Isolated singularity): 3A) QFT \mathcal{T}_{Xloc} with string theory construction on conical non-compact X^{loc}

[Del Zotto, Heckman, Park, Rudelius, '16] [Morrison, Schafer-Nameki, Willett, '20] [Albertini, Del Zotto, Etxebarria, Hosseini, '20]

Symmetry [M.C. Heckman, Hübner, Torres, '22] Operator[Garcia-Etxebarria, '22] [Apruzzi, Bah, Bonetti, Schäfer-Nameki, '22]..

Its SymTh follows via compactification over radial slices, resulting in 1A):

[Apruzzi, Bonetti, Garcia Etxebarria, Hosseini, Schäfer-Nameki, 2021] [Heckman, Hübner, Torres, Yu, Zhang, '22][van Beest, Gould, Schäfer-Nameki, Wang, '22] [Yu, '23] [Apruzzi, Bonetti, Gould, Schäfer-Nameki, '23] [Lawrie, Yu, Zhang, '23] [Del Zotto, Meynet, Moscrop, '24] ..[Franco, Yu, '24]...

Note: Branes support worldvolume SymTh w/ Non-invertible Fusion Rules

3B) Plentiful examples where general (nesting) settings of 1) = 2) occur.

3B) Plentiful examples where general (nesting) settings of 1) = 2) occur.

Prototype (non-isolated singularity): A string construction of intersecting flavor branes with defect degrees of freedom at their intersection:

Two flavor branes (red) intersect at S_0 (star). The tubular neighborhoods of the flavor branes (blue) and their asymptotic boundaries (light blue). The tubes glue along the neighborhood associated with the intersection S_0 (purple) to the tubular neighborhood of the full singular locus \mathcal{Q} .

- Connection to 2): obvious
- Connection to 1): from string theory prescription one finds the theory on radial slices (associated w/ flavor branes) to be a non-gapped QFT

- Connection to 2): obvious
- Connection to 1): from string theory prescription one finds the theory on radial slices (associated w/ flavor branes) to be a non-gapped QFT

3C) Shift the perspective: how does the symmetry theory of the full system interplay with the symmetry theory of the flavor branes?

 Answer: the defect and its symmetry theory realize an edge-mode to the flavor brane and its symmetry theory, respectively:

The compactification now naturally realizes a corner mode which we know to be the relative defect theory (via string theory).

In the rest of the talk:

- Technical details of a concrete example (torsional)
- Outlook & Concluding remarks

Example: 5D SCFT

- SU(n) 5D SCFT at $\{z_1, z_2, z_3\} = 0 \rightarrow *$ SU(2) flavor brane at $\{z_1, z_2\} = 0 \rightarrow \text{red line}$
- SU(n) 5D SCFT as defect within a 7D SU(2) SYM theory

Comment:

[M.C. Heckman, Hübner, Torres, '22]

These examples studied to identify geometric origin of higher-form symmetries (0-form, 1-form & 2-group) by studying the corresponding symmetry defects via algebraic topology [cutting & gluing of singular boundary of the non-compact space].

Comment:

[M.C. Heckman, Hübner, Torres, '22]

These examples studied to identify geometric origin of higher-form symmetries (0-form, 1-form & 2-group) by studying the corresponding symmetry defects via algebraic topology [cutting & gluing of singular boundary of the non-compact space].

Within the current framework, a concrete construction of the nested SymTh of this joint 7D/5D system. It will reproduce old results, but the framework is now more general as one can study how any topological operator behaves when pushed from the symmetry bulk onto the symmetry boundary.

Example: 5D SCFT Steps toward nested SymTh

locus

... - further b.c.

• Compactification to KK theory and end-of-world theory:

 Construct symmetry theory from normal geometry to flavor brane $(S^1 \rtimes \mathbb{C}^2/\mathbb{Z}_2)$ and SCFT $(\mathbb{C}^2/\mathbb{Z}_{2n})$:

[Via reduction of the topological 11D supergravity terms on corresp. radial shells]

Example: 5D SCFT Steps toward nested SymTh

locus

... - further b.c.

• Compactification to KK theory and end-of-world theory:

 Construct symmetry theory from normal geometry to flavor brane $(S^1 \rtimes \mathbb{C}^2/\mathbb{Z}_2)$ and SCFT $(\mathbb{C}^2/\mathbb{Z}_{2n})$:

[Via reduction of the topological 11D supergravity terms on corresp. radial shells]

 Result: Bulk flavor brane SymTh S_{7D} with edgemode SymTh S_{6D} & 5D SCFT a corner mode

Example: 5D SCFT 7D SymTh, its edge 6D SymTh & b.c.

• Field Content: 1-form symmetry backgrouns for 6D flavor brane and 5D SCFT are 2-cocycles $B_2^{\mathbb{Z}_2}$ and $B_2^{\mathbb{Z}_{2n}}$ in 7D and 6D SymTh, respectively:

Boundary conditions:

$$B_2^{\mathbb{Z}_2}|_{{\scriptscriptstyle \mathsf{right\,edge}}} = nB_2^{\mathbb{Z}_{2n}}$$

• $\Rightarrow \mathbb{Z}_n \subset \mathbb{Z}_{2n}$ worth of profiles not fixed by boundary conditions

• $\Rightarrow \mathbb{Z}_n$ 1-form symmetry background field of 5D SCFT

Example: 5D SCFT 7D SymTh, its edge 6D SymTh & b.c.

• Field Content: 1-form symmetry backgrouns for 6D flavor brane and 5D SCFT are 2-cocycles $B_2^{\mathbb{Z}_2}$ and $B_2^{\mathbb{Z}_{2n}}$ in 7D and 6D SymTh, respectively:

• Boundary conditions:

$$B_2^{\mathbb{Z}_2}|_{{\scriptscriptstyle \mathsf{right\,edge}}} = n B_2^{\mathbb{Z}_{2n}}$$

- $\Rightarrow \mathbb{Z}_n \subset \mathbb{Z}_{2n}$ worth of profiles not fixed by boundary conditions
- $\Rightarrow \mathbb{Z}_n$ 1-form symmetry background field of 5D SCFT
- Comments: The symmetry structures of the corner mode are those of the edge 6D SymTh, modulo the constraints imposed by the flavor 7D SymTh.
 The 1-form symmetry of SCFT is extended by the 1-form symmetry of flavor brane → hallmark of a 2-group.

Example: 5D SCFT Field Theory vs Geometry

• Interpretation of Boundary Condition (Field Theory): Bulk surface of S_{7D} , pushed into S_{6D} , decomposes into *n* surfaces of S_{6D} .

 Interpretation of Boundary Condition (Geometry): M2-brane wrapping loci fractionate in homology.

Example: 5D SCFT Anomaly Couplings

• The SymTh Lagrangian, characterizing anomaly couplings

This framework offers interesting new extensions: In the reduction of the topological M-theory terms, one finds a mixed anomaly, a pairing between the flavor 1-form symmetry & that of the SCFT:

Bulk-boundary mixed anomaly via refinements of triple linkings:

$$\begin{aligned} H^2(\partial X) \times H^2(\partial X) \times H^2(\partial X^\circ) &\to \mathbb{Q}/\mathbb{Z} \\ \mathbb{Z}_n \times \mathbb{Z}_n \times \mathbb{Z}_{2n} \to \mathbb{Q}/\mathbb{Z} \\ (1,1,1) &\mapsto 1/n \end{aligned}$$

Also:

• Pure 5D 1-form self-anomaly by resticting $H^2(\partial X) \subset H^2(\partial X^\circ)$:

$$H^{2}(\partial X) \times H^{2}(\partial X) \times H^{2}(\partial X) \to \mathbb{Q}/\mathbb{Z}$$
$$\mathbb{Z}_{n} \times \mathbb{Z}_{n} \times \mathbb{Z}_{n} \to \mathbb{Q}/\mathbb{Z}$$
$$(1, 1, 1) \mapsto 2/n$$

- Refined calculation of mixed anomalies between flavor edge and corner theory (see example) → work in progress...
- More examples...; Higher order nesting...

- Refined calculation of mixed anomalies between flavor edge and corner theory (see example) → work in progress...
- More examples...; Higher order nesting...
- Symmetry Inheritance: relating defect and symmetry operators between bulk and boundary SymThs (see example) →

- Refined calculation of mixed anomalies between flavor edge and corner theory (see example) → work in progress...
- More examples...; Higher order nesting...
- Symmetry Inheritance: relating defect and symmetry operators between bulk and boundary SymThs (see example) →
- Lower-Form Symmetries:

[Heckman, Murdia, Hübner, '23]

- Refined calculation of mixed anomalies between flavor edge and corner theory (see example) → work in progress...
- More examples...; Higher order nesting...
- Symmetry Inheritance: relating defect and symmetry operators between bulk and boundary SymThs (see example) →
- Lower-Form Symmetries:

[Heckman, Murdia, Hübner, '23]

(-1)-form symmetries of the flavor edge theory (QFT_D), a spacetime filling operator,

- Refined calculation of mixed anomalies between flavor edge and corner theory (see example) → work in progress...
- More examples...; Higher order nesting...
- Symmetry Inheritance: relating defect and symmetry operators between bulk and boundary SymThs (see example) →
- Lower-Form Symmetries:

[Heckman, Murdia, Hübner, '23]

QFTd

QFTD

(-1)-form symmetries of the flavor edge theory (QFT_D), a spacetime filling operator, can be inherited to the corner theory (QFTd), yielding (-2)-,(-3)-... (-1-D+d)-form symmetries.

- Refined calculation of mixed anomalies between flavor edge and corner theory (see example) → work in progress...
- More examples...; Higher order nesting...
- Symmetry Inheritance: relating defect and symmetry operators between bulk and boundary SymThs (see example) →
- Lower-Form Symmetries:

[Heckman, Murdia, Hübner, '23]

(-1)-form symmetries of the flavor edge theory (QFT_D), a spacetime filling operator, can be inherited to the corner theory (QFTd), yielding (-2)-,(-3)-... (-1-D+d)-form symmetries.

Outlook Last, but not least

• The fate of global symmetries in compact models with singular strata of varying dimension

[M.C., Heckman, Hübner, Torres '23]

Studied via gluing (and cutting) of noncompact examples

Outlook Last, but not least

• The fate of global symmetries in compact models with singular strata of varying dimension

[M.C., Heckman, Hübner, Torres '23] Studied via gluing (and cutting) of noncompact examples

Defect Operators (some compactified [massive matter])

Symmetry Operators (some identified \rightarrow symmetry trivialized)

Outlook Last, but not least

• The fate of global symmetries in compact models with singular strata of varying dimension

[M.C., Heckman, Hübner, Torres '23] Studied via gluing (and cutting) of noncompact examples

Defect Operators (some compactified [massive matter])

Symmetry Operators (some identified \rightarrow symmetry trivialized)

(M-Theory on all T⁴ orbifolds & some T⁶ orbifolds)

SymThs + Junctions

Gluing local constructions (w/ localized singularity) \rightarrow assign a junction of SymTh to the field theory sector of M-theory on compact CY theories

SymThs + Junctions = SymTrees

Gluing local constructions (w/ localized singularity) \rightarrow assign a junction of SymTh to the field theory sector of M-theory on compact CY theories

Physical boundary conditions for $\mathcal{T}_i^{\text{foc}}$ at $r_i = 0$. At the central node; partially topological and partially physical b.c. [M.C., Heckman, Hübner, Torres, '23] [Baume, Heckman, Hübner, Torres, Turner, Yu, '23] [Gould, Lin, Sabag, '23]...

SymThs + Junctions = SymTrees

Gluing local constructions (w/ localized singularity) \rightarrow assign a junction of SymTh to the field theory sector of M-theory on compact CY theories

Physical boundary conditions for $\mathcal{T}_i^{\text{foc}}$ at $r_i = 0$. At the central node; partially topological and partially physical b.c. [M.C., Heckman, Hübner, Torres, '23] [Baume, Heckman, Hübner, Torres, Turner, Yu, '23] [Gould, Lin, Sabag, '23]...

Inclusion of flavor banes (strata of singularities) \rightarrow systematize gluing procedure, leading to nesting of SymTrees \rightarrow *Further work*

Thank you!