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Obstacles for dS from UV Theory

• Classical No-Go Theorems

• Dine Seiberg problem



Different approaches
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Classical de Sitter solutions



Classical no-go theorem

starting from a theory that already has a positive cosmological constant. There are
other no go theorems for supersymmetric RS models using five dimensional gauged
supergravity [12, 11, 13]. These are complementary to our arguments, since the five
dimensional potential could be positive. If the five dimensional gauged supergravity
arises from a large volume compactification then we could apply our results but the
arguments in [12, 11, 13] also cover 5d theories which cannot be interpreted as large
volume compactifications.

We consider a D dimensional gravity theory, with D > 2, compactified down to
d dimensions. We denote by M, N, L, .. the D dimensional indices. We denote by
ν, ν, ρ, ... the d dimensional indices and by m, n, l, the D − d dimensional indices. We
will assume that the D dimensional gravity theory satisfies the following conditions.

• The gravity action does not contain higher curvature corrections.

• The potential is non-positive, V ≤ 0. This condition in not obeyed in massive
IIA supergravity which has a positive cosmological constant so we treat that case
separately in 6.3. V could be just a negative cosmological constant or it can
depend on the scalars but it cannot be positive (at least in the range of values of
scalar fields that is explored in the solution under consideration).

• The theory contains massless fields with positive kinetic terms. These massless
fields have field strengths which are n forms, Fi1,..,in. For n = 1 we have scalar
fields, n = 2 Maxwell fields (these could be non-abelian, as long as the metric
on the group is positive definite so that the kinetic terms are positive), etc. We
consider n < D, if n = D it would give a contribution similar to a potential and
we go back to the previous assumption.

• The d dimensional effective Newton’s constant is finite.

We start by writing out Einstein’s equations in D dimensions

RMN = TMN − 1

D − 2
gMNTL

L (30)

Notice that in (32) we neglected higher derivative corrections. We write the metric as

ds2
D = Ω2(y)

(

dx2
d + ĝmndyndym

)

(31)

where dx2
d = ηµνdxµdxν where η is the metric of the d dimensional space which is

either Minkowski or de-Sitter space. Now we calculate the Rµν components of the D
dimensional metric and we find that Einstein’s equations imply

Rµν = Rµν(η) − ηµν

(

∇̂2 log Ω + (D − 2)(∇̂ log Ω)2
)

= Tµν −
1

D − 2
Ω2ηµνT

L
L (32)
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where the hat denotes covariant derivatives and contraction of indices with respect to
the metric ĝ. Taking the trace over η on both sides we find

∇̂2 log Ω + (D − 2)(∇̂ log Ω)2 =
1

(D − 2)ΩD−2
∇2ΩD−2 = R(η) + Ω2(−T µ

µ +
d

D − 2
TL

L)

(33)
where in the term involving the stress tensor on the right hand side we contract the
indices with the D dimensional metric and R(η) is the curvature of the d dimensional
metric η. We will now proceed to prove that the term in the right hand side involving
the stress tensor is non-negative.

6.1 T̃ ≥ 0

The stress tensor will be the sum of the contributions to the stress tensor of the various
massless fields. We will consider each contribution individually since they are all adding
up to the total stress tensor. Let us define

T̃ ≡ −T µ
µ +

d

D − 2
TL

L (34)

We want to show that all contributions to T̃ are non-negative. Let us first consider the
potential term. We will not keep track of irrelevant positive numerical constants. The
stress tensor is

TMN ∼ −V gMN , T̃ ∼ −V
2d

D − 2
≥ 0 (35)

if V < 0 as assumed. Now let us consider the n form field strengths. Their stress
tensors are

TMN =FML1..Ln−1
F L1..Ln−1

N − 1

2n
gMNF 2

T̃ = − FµL1..Ln−1
F µL1..Ln−1 +

d

D − 2
(1 − 1

n
)F 2

(36)

In principle we could have functions of scalar fields multiplying these expressions, as
we have in some supergravity theories, and we could also have many types of n form
fields. We will not indicate these explicitly but it is obvious how to extend the following
arguments to those cases. The space time indices of non-vanishing components of F
could be completely along the internal dimensions or, if n ≥ d, they could have d out
of n indices along the d dimensions and the rest along the internal dimensions. Other
possibilities do not preserve the isometries of Rd or dSd. In constructing T̃ these two
types of components will make separate contributions. We will therefore consider them
independently and show that each of them is positive. So let us first consider the part
of F with all indices internal. Then we have that F 2 ≥ 0 and we see from (36) that we
have a positive contribution. For all n > 1 forms this contribution is strictly positive
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if we have a non-vanishing field strength, but for n = 1 the contribution is zero even if
we have a non-vanishing field strength. Now we consider the part of the field strength
with components along the d-dimensional space. The difference between the term that
contains a trace over the µ index and the others is that we are choosing a particular
order of contractions of the indices comparing the two we find that

FµL1..Ln−1
F µL1..Ln−1 =

d

n
F 2.

Then we find that

T̃ = −F 2 d(D − 1 − n)

n(D − 2)
≥ 0 (37)

Where we used that F 2 < 0 since we are considering temporal components of F . We
have also used that we are considering n ≤ D − 1.

6.2 Condition on the warp factor

Multiplying (33) by a power of Ω and using that T̃ ≥ 0 we conclude that

Ω̂(D−2)∇2Ω(D−2) ≥ 0 (38)

with equality holding only if the right hand side of (33) is zero so that the d dimensional
space is Minkowski space. Remember that the d dimensional Newton constant is given
by

1

Gd
N

∼
∫

ddy
√

ĝΩ(D−2) (39)

We are assuming that this Newton constant is finite.

Let us first assume that Ω is bounded below and above in the internal manifold. In
that case the internal manifold should be compact. Integrating (38) over the compact
internal space by parts we conclude that

∫

d(D−d)y
√

ĝ(∇̂Ω(D−2))2 ≤ 0 which is possible
only if Ω is constant. In that case we conclude that the right hand side of (33) is zero,
so that we cannot have a deSitter space and the only n forms that we can be turned
on are the n = 1, D − 1 forms.

As discussed in section 5 we expect that singularities where Ω diverges should not
be allowed. So we conclude that Ω is bounded above. Now suppose that we have
regions where Ω → 0 or we allow singularities obeying the strong form of the criterion
in section 5, which says that g00 should not increase as we approach the singularity.
In this case we can define a region R which leaves out the singularities and such that
Ω > ϵ in R for a suitably small ϵ. By our assumptions about the singularities it is clear
that we can choose R so that ∇Ω is either zero or pointing inwards at the boundary
of R.
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Gibbons, De Wit, Maldacena-Nunez…



Ways out

• Quantum effects,…

• Relax assumptions (e.g. V≤ ")



De Sitter from
6D (1,0) Gauged Supergravity



Matter content

of the scalar field space corresponds to the runaway directions and it is desirable to find solutions that
can be trusted for which the approximations are under control.

The simplest and more direct possibility would be to evade the classical no-go theorems for which
quantum corrections can be systematically neglected. However, most attempts so far have failed to
find de Sitter solutions in a trustable regime (see for instance [2, 3]. One of the main assumptions of the
no-go theorems is the existence of a negative scalar potential which is satisfied by most supergravity
theories. One exception is the 10D Romans supergravity that was considered in [3], but its structure
is not well understood within string theory to address issues regarding the singularities of the solution.

Here we point out a second exception which is the 6D (1, 0) supergravity. This theory has been
thoroughly studied for di↵erent reasons, starting with the pioneering work of Salam and Sezgin who
found an elegant supersymmetric solution giving rise to Minkowski space in 4D. Further generalisations
allowed for the existence of de Sitter, and anti-de Sitter solutions as long as singularities are allowed
such as the presence of branes. Furthermore, this theory has been found to be uplifted to 10D and
therefore its solutions may be promoted to solutions of the full string theory. This is the subject of
this article.

Regarding the Dine-Seiberg problem we point out that the same problem can be claimed to exist
in the 6D theory derived from string theory in which the 6D scalar potential is of the runaway type
and therefore no classical maximally symmetric solutions exist. This issue can be easily dealt with by
searching for maximally symmetric solutions not in the full 6D but in lower dimnesions such as 4D.
This is a way to understand the general results from the 6D theory.

We organise this article as follows....

2 Chiral 6D Supergravity

Let us start by briefly reviewing the 6D (1, 0) supergravity. The basic supersymmetric multiplets are:

• Gravity multiplet. Metric gMN a self-dual antisymmetric tensor B+
MN

, one left-handed gravitino
 ↵

M
.

• Tensor multiplet. One anti self-dual antisymmetric tensor B�
MN

, one scalar �, one right-handed
fermion  (tensorino).

• Vector multiplet. One vector AM and one fermion � (gaugino).

• Hypermultiplet: Two complex scalars q1, q2 and one right-handed Weyl fermion ⇠ (hyperino) .

In general there are nT tensor multiplets, nV vector multiplets and nH hypermultiplets. This
theory is chiral that makes it appealing for any potential connection with the Standard Model, but
it is also subject to anomalies. Contrary to 4D in which anomaly cancelation conditions are very
arbitrary for this theory the anomaly cancellation only requires:

nH � nV + 29nT = 273 (2.1)

In most of this article we will concentrate on the case nT = 1 for which the two anti-symmetric
tensors B+

MN
coming from the single gravity multiplet and B�

MN
coming from the tensor multiplet,

can be combined into a general unconstrained antisymmetric tensor BMN . In the general case there
will be a surplus of anti self-dual tensors.

– 2 –

In general nT tensor, nV vector and nH hyper multiplets

In general there can be more than one of each type (except the graviton multiplet), with nT

denoting the number of tensor multiplets, nV the number of vector multiplets and nH the number
of hypermultiplets. Indeed, anomaly cancellation implies multiple multiplets are the rule not the
exception. Although having chiral fermions is attractive for phenomenological purposes it also means
that care must be taken to ensure that no gauge symmetries are anomalous. Green-Schwarz anomaly
cancellation [33] can occur in 6D (just as it does in 10D) but only if some consistency conditions are
satisfied, such as the number of each type of multiplet satisfies [34–36]

nH � nV + 29nT = 273 . (2.1)

The number of scalar fields depends on the number of tensor and hypermultiplets, with the ones from
the tensor multiplets parametrizing the coset SO(1, nT )/SO(nT ) while the 4nH scalars coming from
the hypermultiplets parametrize a quaternionic manifold.

6D chiral theories are notorious because for them an action need not always exist if there are
unequal numbers of self-dual and anti-self-dual skew tensor fields. For this reason and for simplicity
we concentrate on the case nT = 1 so that the field B�

MN
from the tensor multiplet can combine with

B+
MN

from the gravity multiplet into an unconstrained antisymmetric tensor BMN . In this case we
have a single tensor-multiplet scalar ' and an action formulation exists. The single tensor-multiplet
scalar we denote by '1.

When searching for background configurations we can set all fermion fields to zero and focus on
scalar fields, that come from the tensor multiplets and hypermultiplets. Because the supergravity is
gauged there is a scalar potential of the form [10]

V =
2g2

4
U(q) e' , (2.2)

where g is the 6D gauge coupling and 2 = 8⇡G6 is the 6D Newton’s constant for gravity. The
function U(q) can be minimized for the hypermultiplet fields, qU , leading to a vacuum configuration
for which these fields can all be set to zero consistent with their equations of motion 2. The function
U(q) is normalized so that Umin = 1 at this minimum. (In later sections we return to allow nontrivial
hypermultiplet scalar configurations in later sections when we discuss F -theory.)

Background gauge fields can be nonzero consistent with maximal symmetry in 4D and we consider
only a single nonzero background gauge field, chosen to be the gauge potential, AM , that gauges the
specific UR(1) symmetry for which the gravitino field carries nonzero charge. The action for this gauge
field, the Kalb-Ramond field BMN the remaining scalar ' and the metric then has the form considered
in the original paper of Salam and Sezgin:3

L6 = �
p
�g


1

22
gMN

⇣
RMN + @M'@N'

⌘
+

1

4
e�'FMNF

MN +
1

12
e�2'HMNPH

MNP +
2g2

4
e'

�
,

(2.3)
with field strengths defined by F(2) = dA(1), H(3) = dB(2) +

1
2F(2) ^ A(1) (where the bracketed

subscript (p) in the index-free notation indicates the field in question is a p-form).

1In general for nT > 1 the coset SO(1, nT )/SO(nT ) is parametrized by fields j↵, with ↵ = 1, · · · , nT +1, constrained
by ⌦↵�j

↵
j
� = 1, with ⌦↵� = diag(�1, 1, · · · , 1). For nT = 1, the constrain is satisfied by j

0 = cosh', j1 = sinh' and
we can work with the unconstrained field '. See for instance [37].

2The function U(q) depends on which groups are gauged but it takes generically the form U(q) = A +
P

i Bi|qi|2
with A,Bi positive constants and the sum

P
i is over a subset of the hypermultiplets [38–41].

3Like all sensible people we use a positive-signature metric and Weinberg’s curvature conventions [42], which di↵er
from the popular MTW conventions [43] only in the overall sign of the Riemann tensor.
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Scalar  fields

• From tensor multiplets nT real scalars

• From hypermultiplets 

We will always restrict ourselves to the bosonic content of the model, and adopt
notations described below. First of all, we denote all 6d two-forms collectively as B̂α,
where α = 1, ...nT + 1.7 The scalars coming from the nT tensor multiplets parameterize
the quotient

SO(1, nT )/SO(nT ) . (3.1)

It is customary to describe this coset scalar manifold by means of a vielbein formalism.
We refer the reader to e.g. [5] for a detailed account. For our present discussion we need
only to recall that a constant SO(1, nT ) metric Ωαβ is introduced, along with a set of
nT + 1 scalar fields jα. The metric Ωαβ has mostly minus Lorentzian signature (1, nT ),
and the scalars jα are subject to the constraint

Ωαβj
αjβ = 1 . (3.2)

Moreover, the scalar manifold is endowed with another non-constant, positive definite
metric gαβ , which is given in terms of Ωαβ , jα by

gαβ = 2jαjβ − Ωαβ , (3.3)

where jα = Ωαβjβ . This metric is needed to write down the (anti)-self-duality condition
for B̂α in a SO(1, nT ) covariant way, as we will see in equation (3.21).

As far as vectors are concerned, in this section we consider a supergravity model
with simple gauge group G. Let g be the Lie algebra of G. We denote the g-valued
gauge one-form by Â, and matrix multiplication will always be understood. Moreover,
we use anti-Hermitian generators, and the expression for the non-Abelian field strength
two-form reads

F̂ = dÂ+ Â ∧ Â = dÂ+ 1
2 [Â, Â] . (3.4)

Let us recall the definition of the Chern-Simons three-form

ω̂CS = tr
(

Â ∧ dÂ+ 2
3Â ∧ Â ∧ Â

)

(3.5)

where the trace is taken in a suitable representation of g. More details about our norma-
lization for gauge traces can be found in appendix B. It is also useful to point out two
key properties of the Chern-Simons three-form,

δω̂CS = tr dλ̂ ∧ dÂ , dω̂CS = tr F̂ ∧ F̂ . (3.6)

Next, let us make some remarks about the hyper sector. Each hypermultiplet contains
four real scalars, and therefore we use the notation qU (U = 1, ..., 4nH). These scalar fields
can be considered as real coordinates for a quaternionic manifold, whose metric we write
as hUV . The geometric structures of quaternionic manifolds have been studied intensively,
see e.g. [33, 34]. Since our main focus will be on the tensor and vector multiplet structure,

7Later on we will identify nT + 1 = h1,1(B2) in the duality to M-theory. This provides the match of
the indices of the present section with the ones of section 2.2.
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Quaternionic manifold

where we have used that

j
0 = sinh' , j

1 = cosh' , v = e
�
, F

2 ⌘ CIJF
I MN

F
J

MN , (2.7)

h =
1

2v2
, k

0
I = 0 , V =

Ṽ

Zv2
, (FF̃ )MN = CIJF

I R

M F
J

NR . (2.8)

Note that we get an overall minus sign on the right hand side of Eq. (2.4) with respect

to [2] due to the di↵erent convention used.

3 Maximally symmetric compactifications

The results of this section should be the same as in [2].

4 Near brane solutions

We assume, near the brane

' = q ln r , � = s ln r , ds
2 = r

2w
gµ⌫dx

µ
dx

⌫ + dr
2 + r

2↵
f(z)dzdz , (4.1)

where q, s, w,↵ are constants and (r, z) are the coordinates of the two extra-dimensions.

Note that the last of Eq. (4.1) implies that the warp factor takes the form W = r
w. We

also assume that for the 2-forms near the brane

F
ra ⇠ r

�
. (4.2)

We can then determine the constants by solving the equations of motion in the near the

brane region. We start from the 2-form equation of motion that gives, as in [2]

0 = @r

�p
ge

�'
F

rz
�
⇠ @r

�
r
4w+↵�q+�

�
, (4.3)

where
p
g ⇠ r

4w+↵. Hence, we get the constraint � = q � 4w � ↵, from which

F
2 ⇠ r

2q�8w
. (4.4)

From the equation of motion for ':

⇤' ⇠ q(4w + ↵� 1)r�2
, (4.5)

while

Ṽ e
'�2� ⇠ r

q�2s
, (4.6)

e
�'

F
2 ⇠ r

�q+2q�8w ⇠ r
q�8w

. (4.7)

The requirement that both the potential and the flux terms are subleading in the limit

r ! 0 with respect to ⇤' implies

q � 2s > �2 , q � 8w > �2 . (4.8)

2

nT=1
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dictate. These are then used in the results of Section II to more directly relate the n-dimensional

curvature to the power-law dependence of the bulk fields in the near-brane limit. Finally, Section

IV specializes to 6D supergravity compactified to 4 maximally-symmetric dimensions, and shows

how to use the previous two sections to generalize the class of 6D solutions to include those having

de Sitter-like and anti-de Sitter-like 4-dimensional slices.

II. THE CURVATURE-ASYMPTOTICS CONNECTION

In this section we summarize the field equations of interest, which are the bosonic parts of the

equations of motion for many higher-dimensional supergravities. We also here specialize the fields

appearing in these equations to the most general configurations which are maximally symmetric

in (3+1) non-compact dimensions, as is appropriate for describing the warped compactifications of

interest. We allow these solutions to have singularities (more about which below) at various points

within the extra dimensions corresponding to the positions of various branes having co-dimension

≥ 2. Our goal in so doing is to establish a general connection, eq. (8), between the curvature of

the noncompact 4D geometry and the asymptotic behaviour of the bulk fields in the vicinity of the

various branes.

A. The Field Equations

Our starting point is the following action in D spacetime dimensions

S = −
∫

dDx
√
−g

[

1

2κ2
gMN

(

RMN + ∂Mϕ∂Nϕ
)

+
1

2

∑

r

1

(pr + 1)!
e−prϕF 2

r +A eϕ
]

, (1)

where κ2 = 8πG denotes the higher-dimensional Newton constant and A is a dimensional constant.

The fields Fr are the (pr + 1)-form field strengths for a collection of pr-form gauge potentials, Ar,

and F 2 = FM1..Mpr+1
FM1..Mpr+1 . When A = 0 this is sufficiently general to encompass the bosonic

parts of a variety of higher-dimensional, ungauged supergravity lagrangian densities [14]. When

A ̸= 0 the dilaton potential has the form found in chiral 6D supergravity [15].

The field equations obtained from this action are:

!ϕ− κ2A eϕ + κ2
∑

r

pr
2(pr + 1)!

e−prϕF 2
r = 0 (dilaton)

∇M

(

e−prϕ FMN...Q
r

)

+ (CS terms) = 0 (pr-form) (2)

RMN + ∂Mϕ∂Nϕ+ κ2
∑

r

1

pr!
e−prϕ

[

F 2
r

]

MN
+

2

D − 2
(!ϕ) gMN = 0 (Einstein) ,

5

D=6, r=2, A>0

• Positive potential (evades Maldacena-Nunez theorem)

• Chiral

• No maximally symmetric solution in 6D (Dine-Seiberg problem in 6D?)

• Maximally symmetric in 4D

• Maximally symmetric smooth solution:  S2 x Minkowski, N=1 SUSY.
x  R1,3

In general there can be more than one of each type (except the graviton multiplet), with nT

denoting the number of tensor multiplets, nV the number of vector multiplets and nH the number
of hypermultiplets. Indeed, anomaly cancellation implies multiple multiplets are the rule not the
exception. Although having chiral fermions is attractive for phenomenological purposes it also means
that care must be taken to ensure that no gauge symmetries are anomalous. Green-Schwarz anomaly
cancellation [33] can occur in 6D (just as it does in 10D) but only if some consistency conditions are
satisfied, such as the number of each type of multiplet satisfies [34–36]

nH � nV + 29nT = 273 . (2.1)

The number of scalar fields depends on the number of tensor and hypermultiplets, with the ones from
the tensor multiplets parametrizing the coset SO(1, nT )/SO(nT ) while the 4nH scalars coming from
the hypermultiplets parametrize a quaternionic manifold.

6D chiral theories are notorious because for them an action need not always exist if there are
unequal numbers of self-dual and anti-self-dual skew tensor fields. For this reason and for simplicity
we concentrate on the case nT = 1 so that the field B�

MN
from the tensor multiplet can combine with

B+
MN

from the gravity multiplet into an unconstrained antisymmetric tensor BMN . In this case we
have a single tensor-multiplet scalar ' and an action formulation exists. The single tensor-multiplet
scalar we denote by '1.

When searching for background configurations we can set all fermion fields to zero and focus on
scalar fields, that come from the tensor multiplets and hypermultiplets. Because the supergravity is
gauged there is a scalar potential of the form [10]

V =
2g2

4
U(q) e' , (2.2)

where g is the 6D gauge coupling and 2 = 8⇡G6 is the 6D Newton’s constant for gravity. The
function U(q) can be minimized for the hypermultiplet fields, qU , leading to a vacuum configuration
for which these fields can all be set to zero consistent with their equations of motion 2. The function
U(q) is normalized so that Umin = 1 at this minimum. (In later sections we return to allow nontrivial
hypermultiplet scalar configurations in later sections when we discuss F -theory.)

Background gauge fields can be nonzero consistent with maximal symmetry in 4D and we consider
only a single nonzero background gauge field, chosen to be the gauge potential, AM , that gauges the
specific UR(1) symmetry for which the gravitino field carries nonzero charge. The action for this gauge
field, the Kalb-Ramond field BMN the remaining scalar ' and the metric then has the form considered
in the original paper of Salam and Sezgin:3

L6 = �
p
�g


1

22
gMN

⇣
RMN + @M'@N'

⌘
+

1

4
e�'FMNF

MN +
1

12
e�2'HMNPH

MNP +
2g2

4
e'

�
,

(2.3)
with field strengths defined by F(2) = dA(1), H(3) = dB(2) +

1
2F(2) ^ A(1) (where the bracketed

subscript (p) in the index-free notation indicates the field in question is a p-form).

1In general for nT > 1 the coset SO(1, nT )/SO(nT ) is parametrized by fields j↵, with ↵ = 1, · · · , nT +1, constrained
by ⌦↵�j

↵
j
� = 1, with ⌦↵� = diag(�1, 1, · · · , 1). For nT = 1, the constrain is satisfied by j

0 = cosh', j1 = sinh' and
we can work with the unconstrained field '. See for instance [37].

2The function U(q) depends on which groups are gauged but it takes generically the form U(q) = A +
P

i Bi|qi|2
with A,Bi positive constants and the sum

P
i is over a subset of the hypermultiplets [38–41].

3Like all sensible people we use a positive-signature metric and Weinberg’s curvature conventions [42], which di↵er
from the popular MTW conventions [43] only in the overall sign of the Riemann tensor.
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The bosonic equations of motion are:

⇤6'+
2

4
e�'FMNF

MN +
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6
e�2'HMNPH

MNP
�

2g2

2
e' = 0 (2.4)

rM

⇣
e�'FMN

⌘
+ e�2'HPNQFPQ = 0 , rM

⇣
e�2'HMNP

⌘
= 0 (2.5)

RMN + @M'@N'+ 2e�'FMPF
P

N
+

1

2
(⇤6') gMN = 0 , (2.6)

in which (2.4) has been used to rewrite (2.6) so that the terms proportional to gMN involve only the 6D
d’Alembertian ⇤6' := gPQ

rPrQ'. This turns out to be possible because the system has a classical
scaling symmetry under which the replacements

gMN ! c gMN and e�'
! c e�' imply L6 ! c2L6 , (2.7)

for constant c. Although not a symmetry of the action this transformation does leave the equations
of motion invariant [15, 44, 45].

2.2 Solutions

Because the scalar potential for ' is monotonic it obstructs there being 6D maximally symmetric
solutions for any finite '. This can be seen because maximal symmetry in 6D requires FMN = HMNP =
0 and that ' be constant, but this is inconsistent with the dilaton field equation which implies ⇤6'
cannot vanish. The same is not true for solutions that are maximally symmetric only in 4D, however,
since although these still require HMNP = 0 the gauge field can be nonzero if restricted to the two
extra dimensions: Fmn with m,n = 4, 5.

2.2.1 Salam-Sezgin solution

For the simplest solutions spacetime has a product metric,

ds2 = gµ⌫(x) dx
µdx⌫ + gmn(y) dy

mdyn, (2.8)

with gmn being the metric on a 2-sphere and Fmn = f ✏mn proportional to the 2-sphere volume form.
Maximal 4D symmetry requires ' and f are independent of the 4D coordinates xµ and the field
equation (2.5) then implies e�'f is a constant. For such a geometry ⇤6' = ⇤2' = 0 implies ' is
constant and consistency with (2.4) requires

e�'f = 2g/2. (2.9)

When ⇤6' = 0 eq. (2.6) also implies the maximally symmetric 4D metric gµ⌫ must be flat. The
resulting nonsingular geometry is R1,3

⇥ S2 with R1,3 denoting 4D Minkowski spacetime and S2 the
round 2-sphere. The metric then takes the simple form:

ds2 = ⌘µ⌫(x) dx
µdx⌫ + ⇢2

�
d�2 + sin2 � d✓2

�
(2.10)

Where ⇢ is the 2-sphere’s radius. The solution gives then Rµ⌫ = 0 and:

Rmn = �e�'FmpF
p

n
= �f2e�'gmn = �

gmn

⇢2
=) ⇢2e' =

✓
2

2g

◆2

(2.11)

Flux quantization on the 2-sphere implies f / ⇢�2, so although the field equations determine the
combination ⇢2e' the quantities ⇢ and ' are not separately determined. This is consistent with
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the classical rescaling symmetry (2.7), which implies one combination of these two moduli is a flat
direction of the potential in the 4D e↵ective theory. It happens that for the simplest nonzero flux
quantum (n = ±1) this solution preserves N = 1 supersymmetry in 4D, and this choice is called the
Salam-Sezgin solution.

The Salam-Sezgin solution is remarkable in several ways. It provides explicit chiral N = 1
Minkowski solutions. Just as Calabi-Yau compactifications achieve for string theory but in a sim-
ple background in which the metric is known explicitly, unlike the Calabi-Yau case. Furthermore,
since the starting 6D theory has a positive runaway potential, it illustrates directly the Dine-Seiberg
problem, not allowing a maximally symmetric solution in 6D. But, thanks to the possibility of turning
on magnetic fluxes, it allows a maximally symmetric solution in 4D in which the fluxes compete with
the runaway scalar potential to give rise to the Minkowski vacuum in 4D.

In fact, the dimensional reduction gives rise to a 4D scalar potential for ' and the modulus ⇢ with
three contributions (i) the 6D runaway scalar potential, (ii) the curvature of the 2D sphere and (iii)
the magnetic fluxes. It so happens that these combine to a perfect square scalar potential [46]:

V =
2g2e'

⇢2

✓
1�

4

4g2e'⇢2

◆2

(2.12)

which reproduces the solution in (2.11), fixing the combination e'⇢2 but leaving the combination e'/⇢2

unfixed 4.
The Salam-Sezgin solution is known to be a particular instance of a broader class of solutions to

these equations that include both warped geometries and conical singularities in the extra dimensions
[14–16] (for all of which the 4D metric gµ⌫ remains flat).

2.2.2 A broader class of solutions

A wide variety of exact solutions to the 6D equations (2.4) through (2.6) are known, including scaling
solutions [47], wave solutions [48], black brane solutions [49] and so on. Of particular interest here are
those described in [17] for which the 4D geometry is maximally symmetric but not flat.

These solutions are obtained starting with HMNP = 0 and seeking geometries with the warped-
product metric ansatz

ds2 = ĝMN dxMdxN = W 2gµ⌫ dx
µdx⌫ + a2d✓2 + a2W 8d⌘2 , (2.13)

where gµ⌫(x) is a maximally symmetric 4D metric and the ‘hat’ is meant to distinguish ĝµ⌫ = W 2gµ⌫
from gµ⌫ . The unknown functions W (⌘), a(⌘), '(⌘) and F⌘✓(⌘) are defined on the cylindrically
symmetric extra-dimensional 2D geometry spanned by the coordinates ✓ and ⌘.

Notice that maximal 4D symmetry implies the 4D components of (2.6) become

R̂µ⌫ +
1

2
(⇤2') ĝµ⌫ = 0 , (2.14)

where R̂µ⌫ = 1
4 R̂4 ĝµ⌫ . This shows that R̂4 = ĝµ⌫R̂µ⌫ = �2⇤2' is a total derivative within the two

extra dimensions. If fields are everywhere nonsingular then
H
⇤2' = 0 when integrated over the extra

dimensions and so the maximally symmetric 4D geometry must be flat. But singularities are not
unusual when gravitating sources are present (as the Coulomb solution teaches us for electromagnetic
sources), so a better approach is to excise the positions of any singular sources by surrounding each
of them by a small Gaussian pillbox. In this case integrating over the extra dimensions outside the

4In [46] non-perturbative e↵ects were added to fix the remaining flat direction.
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General 4D Solutions

where ‘(CS terms)’ denotes terms arising from any Chern-Simons terms within the definition of

F(r), and we define

[

F 2
]

MN
= F P ...R

M FNP...R . (3)

The ability to write the term proportional to gMN in the Einstein equation in terms of !ϕ is a

consequence of the particular powers of eϕ which pre-multiply each of the terms in the action,

(1). This choice corresponds to the existence of a scaling symmetry of the classical field equations,

according to which

gMN → ω gMN and eϕ → ω−1 eϕ , (4)

with constant ω and the field strengths, Fr, not transforming. Although this is not a symmetry

of the action, which transforms as S → ω(D−2)/2S, it does take solutions of the classical equations

into one another.

B. Maximally-Symmetric Compactifications

We seek solutions to these equations for which n dimensions are maximally symmetric and

d = D − n are not. In most applications we have in mind n = 4, corresponding to having

3+1 maximally-symmetric directions and d = D − 4 static, compact euclidean dimensions. But

our analysis is general enough also to include (with minor modifications) situations of interest to

cosmology for which there are n = 3 maximally-symmetric spatial dimensions and d = D − 4

time-dependent, compact dimensions.

To this end divide the D coordinates xM , M = 1...D, into n maximally-symmetric coordinates,

xµ, µ = 1...n, and the remaining d = D−n coordinates, yi, i = n+1...d. We use the metric ansatz

which follows from maximal symmetry:

ds2 = ĝMN dxM dxN = W 2(y) gµν(x) dx
µ dxν + g̃ij(y) dy

idyj , (5)

where gµν is an n-dimensional maximally symmetric metric and g̃ij a generic d-dimensional metric.

Throughout this section, we use the convention that hats denote objects constructed from the full

D-dimenional metric ĝMN , while tildes denote objects constructed from the metric g̃ij . Tensors

without hats or tildes are constructed from the metric gµν .

With these conventions the Einstein equation, eq. (2), specialized to the maximally-symmetric

directions reads

R̂µν +
2

D − 2
(!̂ϕ)ĝµν = 0 , (6)

6

where we use that maximal symmetry implies ∂µϕ = 0 and FµN..P
r = 0 (and so

[

F 2
r

]

µν
= 0).

C. Relating Curvature to Bulk Asymptotics

Using the metric ansatz, (5), we may write

ĝµν = W 2gµν , R̂µν = Rµν +
1

n
(W 2−n∇̃2W n) gµν and !̂ϕ = W−n∇̃i(W

ng̃ij∂jϕ) , (7)

where ∇̃2 = g̃ij∇̃i∇̃j . Since maximal symmetry implies Rµν = (R/n) gµν , these equations allow

eq. (6) to be simplified to

1

n
W n−2R = −∇̃i

[

W ng̃ij∂j

(

lnW +
2ϕ

D − 2

)]

. (8)

This last equation represents the main result of this section, and is a generalization to arbitrary

dimensions of a similar result in 6 dimensions derived in ref. [12].

The significance of eq. (8) is most easily seen once it is integrated over the compact d dimensions

and Gauss’ Law is used to rewrite the right-hand side as a surface term:

1

n

∫

M
ddy

√

g̃ W n−2R = −
∑

α

∫

Σα

dd−1y
√

g̃ Ni

[

W ng̃ij∂j

(

lnW +
2ϕ

D − 2

)]

, (9)

where Ni is an outward-pointing normal, with g̃ijNiNj = 1. (If time is one of the d dimensions

then the surface terms must include spacelike surfaces in the remote future and past, for which

g̃ijNiNj = −1.) If there are no singularities or boundaries in the dimensions being integrated then

the right-hand side vanishes, leading to the conclusion that the product W n−2R integrates to zero.

Since R is constant and W n−2 is strictly positive, this immediately implies R = 0, as concluded

for 6D in ref. [12].

Our interest in what follows is the case where the right-hand side of eq. (8) does have singularities

corresponding to the presence of various source branes situated throughout the extra dimensions.

In this case eq. (8) still carries content provided we excise a small volume about the positions of each

singularity, thereby leaving a co-dimension-1 boundary, Σα, which surrounds each of the various

brane positions. In this case eq. (9) directly relates the curvature of the maximally-symmetric d
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F 2
r
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1

n
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In general the scalar fields come from the tensor multiplets and hypermultiplets. The ones from
the tensor multiplets parametrise the coset SO(1, nT )/SO(nT ) whereas those from the hypermultiplets
parametrise a quternionic manifold. Since we will be mostly interested on vacuum configurations, we
will ignore all of the fermion degrees of freedom and restrict to the simplest case nT = 1 and set the
scalars of the hypermultiplets to be constant which in practice means nH = 01. We will relax this
condition later on when we discuss F-theory and one hypermultiplet cannot be set to constant.

This is the action that was considered in the original paper of Salam and Sezgin. The Lagrangian
for this theory is then:

L6 = R ⇤ 1� ⇤d� ^ d��
1

2
e�'

⇤ F(2) ^ F(2) �
1

2
e�2'

⇤H(3) ^H(3) � 8g2e' ⇤ 1 (2.2)

with F(2) = dA(1), H(3) = dB(2) +
1
2F(2) ^A(1).

The bosonic equations of motion are:

RMN = @M'@N'+
1

2
e�'

✓
F 2
MN

�
1

8
F 2gMN

◆
+

1

4
e�2'

✓
H2

MN
�

1

6
H2gMN

◆
+ 2g2e'gMN

= @M'@N'+
1

2
e�'F 2

MN
+

1

4
e�2'H2

MN
�

1

4
⇤' gMN

⇤' =
1

4
e�'F 2 +

1

6
e�2'H2

� 8g2e' (2.3)

d
�
e�'

⇤ F(2)

�
= e�2'

⇤H(3) ^ F(2)

d
�
e�2'

⇤H(3)

�
= 0

with FMN defined as F(2) = FMNdxM
^ dxN , etc.

It is straightforward to see that the system has a classical scaling symmetry:

gMN ! !gMN ; e' ! !�1e'; L6 ! !2
L6 (2.4)

which leaves the equations of motion invariant. Notice also that Einstein’s equations get much sim-
plified when written as in the second line in terms of ⇤'.

When looking for maximally symmetric solutions in 4D we will then look for solutions with
H3 = 0. This simplifies substantially the search. The Salam-Sezgin solution corresponds to turning a
non-vanishing value for the flux of Fmn / ✏mn with m,n = 5, 6 labelling the 2 extra dimensions and the
metric ds2 = dxµdxµ + ds22 with ds22 corresponding to the geometry of a 2-sphere and µ, ⌫ = 0, 1, 2, 3.
Notice that for constant ', its equation is satisfied by cancelling the fluxes by the scalar potential and
the all the other equations are automatically satisfied. The solution is then R1,3

⇥ S2 with R1,3 the
four dimensional Minkowski spacetime and S2 the two-sphere.

The Salam-Sezgin solution was found to preserve N = 1 supersymmetry and since ' is constant,
it gives rise to a supersymmetric flat direction in 4D which is consistent with the classical scaling
symmetry. Notice that due to the runaway potential for ' does not allow the possibility of a maximally
symmetric solution in 6D. In some sense it asked for a compactified solution with maximal symmetry in
4D rather than 6D. This solution was shown to be the unique non-singular solution of these equations
[6].

3 4D dS, AdS and Minkowski from 6D Supergravity

Review the Burgess et al classic for solutions with singularities....

1We emphasise that the values of nT , nV and nH are restricted by the anomalous cancellation condition so our
analysis applies to any of their values satisfying this constrain.

– 3 –

Runaway potential! 6D Dine-Seiberg problem?

(uniqueness of Salam-Sezgin solution)



General Solutions

A. Asymptotic Near-Brane Geometries

To this end we assume that the dilaton field, ϕ, and the metric near the brane have the form

ϕ ≈ q ln r and ds2 ≈ r2w gµν(x) dx
µ dxν + dr2 + r2αfab(z) dz

adzb , (10)

where w, α and q are constants. With respect to our initial metric ansatz, eq. (5), we see that this

corresponds to the choices

W (y) = rw and g̃ijdy
idyj = dr2 + r2αfabdz

adzb, (11)

where {yi} = {r, za}. If the supergravity of interest is regarded as describing the low-energy limit

of a perturbative string theory then our conventions are such that eϕ → 0 represents the limit of

weak string coupling. We see that if q < 0 then the region of small r lies beyond the domain of

the weak-coupling approximation.

We imagine the brane location to be given by r = 0 and the coordinate r is then seen to represent

the proper distance away from the brane. With this choice a surface having proper radius r has

an area which varies with r like rα(d−1), and so this area only grows with increasing r if α > 0.

The geometry in general has a curvature singularity at r = 0, except for the special case α = 1 for

which the singularity can be smooth (or purely conical).

Finally, we specialize for simplicity to the case where there is only one non-vanishing gauge flux

which we take to be for a p-form potential whose field strength is F . With a Freund-Rubin ansatz

[19] in mind we also specialize to p = d − 1 and take F proportional to the volume form of the

d-dimensional metric g̃ij . Near r = 0, we assume

F ra1...ap ∼ rγ . (12)

With these assumptions, we now determine the powers α, w, q and γ by solving the field

equations in the region r ≈ 0. We do so by neglecting the contributions of fluxes or the dilaton

potential in the dilaton and Einstein equations, and by neglecting any Chern-Simons contributions

to the equations for the background p-form gauge potential. Once we find the solutions we return

to verify that the neglect of these terms is indeed justified.

The p-form equation gives the condition

0 = ∂r
(

√

ĝe−pϕF rz1...zp
)

∼ ∂r
[

rwn+α(d−1)−pq+γ
]

(13)

which leads (when p = d− 1) to the condition γ = (q − α)(d − 1)− wn, and so

F 2 ∼ r2q(d−1)−2wn . (14)
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Consider next the dilaton equation. We first note that

!̂ϕ =
1√
ĝ
∂M

(

√

ĝ ĝMN ∂Nϕ
)

∼ q[nw + α(d− 1)− 1] r−2. (15)

For comparison, the other terms in the dilaton equation of motion depend on r as follows:

e−pϕF 2 ∼ rq(d−1)−2wn and eϕ ∼ rq. (16)

Thus, provided q > −2 and q(d− 1)− 2wn > −2 (whose domains of validity we explore below) all

of the terms in the dilaton equation are subdominant to !̂ϕ, and so may be neglected. The dilaton

therefore effectively satisfies !̂ϕ = 0 near r = 0, and so from eq. (15) we see that this requires

nw + α(d− 1) = 1. (17)

Next consider the rr-component of the Einstein equation. Given the assumed asymptotic form

for the metric, we calculate

R̂rr = [−wn+ nw2 + (α2 − α)(d − 1)] r−2

= [nw2 + α2(d− 1)− 1] r−2. (18)

As before, we find that the F 2 term is subdominant if q(d − 1) − 2wn > −2. The rr-Einstein

equation therefore gives the additional constraint

nw2 + α2(d− 1) + q2 = 1. (19)

Notice that this equation restricts the ranges of w, α and q to be

−
1√
n
≤ w ≤

1√
n
, −

1√
d− 1

≤ α ≤
1√
d− 1

and − 1 ≤ q ≤ 1 . (20)

In particular it allows a regular solution (or one having a conical singularity) – i.e. one having

α = 1 – only if d = 2 and q = w = 0.

The Einstein equations in the maximally symmetric dimensions can be similarly evaluated

using the assumed asymptotic form for the metric. The contribution of the induced n-dimensional

curvature tensor contributes to this equation subdominantly in r, and so is not constrained to

leading order. (In general, evaluating this equation to subdominant order in r relates the n-

dimensional curvature to the time-evolution of the exponents α, w and q.) The leading term

vanishes as a consequence of eq. (17), and so does not impose any new conditions. Neither do the

Einstein equations in the za directions.
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x  (A)dS4 3-Branes

Asymptotic near brane solutions (n=4, d=2):



Flat Solutions

Two of the corresponding Einstein equations become

(µν) :
W ′′

W
−

(W ′)2

W 2
− 3H2a2W 6 +

1

2
ϕ′′ = 0 (31)

(θθ) :
a′′

a
−

(a′)2

a2
+ κ2Q2 a2eϕ +

1

2
ϕ′′ = 0 (32)

while use of the ηη component of the Einstein tensor

Ĝηη =
2

aW 2

[

3H2a3W 8 − 2Wa′W ′ − 3 a(W ′)2
]

, (33)

allows the third to be written

(ηη) : 6H2a2W 6 −
4 a′W ′

aW
−

6(W ′)2

W 2
+

1

2
(ϕ′)2 +

κ2

2
Q2 a2eϕ −

κ2ĝ2

8
a2W 8eϕ = 0 . (34)

For numerical purposes we use eqs. (29), (31) and (32) to determine ϕ′′, a′′ and W ′′ as a function

of ϕ, a, W , ϕ′, a′ and W ′, and by stepping forward in η generate a solution as a function of η.

By contrast, eq. (34) must be read as a constraint rather than an evolution equation because it

contains no second derivatives. The consistency of this constraint with the evolution equations is

guaranteed (as usual) by general covariance and the Bianchi identities. Evaluating this constraint

at the ‘initial’ point, η = η0, gives H in terms of the assumed initial conditions.

B. Solutions

A general class of solutions to the field equations obtained using these ansätze is found in

ref. [12], which (using their conventions for which κ2 = 1
2 and ĝ = 4g/κ2 = 8g) has the form

eϕ = W−2e−λ3η

W 4 =

(

Qλ2

4gλ1

)

cosh[λ1(η − η1)]

cosh[λ2(η − η2)]
(35)

a−4 =

(

gQ3

λ3
1λ2

)

e−2λ3η cosh3[λ1(η − η1)] cosh[λ2(η − η2)]

and F =

(

Qa2

W 2

)

e−λ3η dη ∧ dθ .

Here λi, ηi and q̂ are integration constants, which are subject to the constraint λ2
2 = λ2

1 + λ2
3. For

all of these solutions the 4D metric is flat: qµν = ηµν .

These solutions have at most two singularities, and these are located at η → ±∞. Locally

changing coordinates to the local proper distance, η → r± with dr± = ∓aW 4 dη, brings the

singularities at η → ±∞ to r± = 0, and shows that these solutions have the asymptotic form

14

Gibbons et al.

ungauged supergravities [23], while A = 2g2/κ4 ≡ ĝ2/8 for chiral gauged supergravity [15]. For

the remainder of this section we focus on compactifications to 4 dimensions in the chiral gauged

case in the presence of a 2-form flux, FMN , for which d = 2, n = 4 and p = 1.

The equations of motion obtained with these choices are

!ϕ+
κ2

4
e−ϕFMNFMN −

κ2ĝ2

8
eϕ = 0 (24)

∇M
(

e−ϕFMN
)

= 0 (25)

RMN + ∂Mϕ∂Nϕ+ κ2e−ϕFMPF
P
N +

1

2
(!ϕ)gMN = 0. (26)

Following ref. [12] we now make the following ansatz for the metric

ds2 = ĝMN dxMdxN = W 2qµν dx
µdxν + a2dθ2 + a2W 8dη2, (27)

where the coordinates (η, θ) parameterize the 2 internal dimensions and qµν is a maximally-

symmetric 4D metric. (In what follows we take qµν to be the 4D de Sitter metric having Hubble

constant H. The anti-de Sitter case can be obtained from the final results by taking H2 → −H2.)

We assume axial symmetry by requiring W , a and ϕ to be functions only of η. The gauge potential

is taken to have the monopole form A = Aθ(η) dθ, and so the only nonzero component of F is

Fηθ(η).

We next write the ordinary differential equations which determine the unknown functions ϕ, a

and W and the unknown constant H. To this end, writing the (Maxwell) equation for FMN as

∂M (
√
−g e−ϕFMN ) = 0 implies (e−ϕFηθ/a2)′ = 0, where primes denote differentiation with respect

to η. Integrating gives

Fηθ = Qa2eϕ, (28)

where Q is an integration constant, and so in particular FMNFMN = 2Q2e2ϕ/W 8.

Using !̂ϕ = ϕ′′/(a2W 8) the equation of motion for the dilaton similarly becomes

ϕ′′ +
κ2

2
Q2a2eϕ −

κ2ĝ2

8
a2W 8eϕ = 0. (29)

Finally, the Einstein equations are obtained using the following expression for the nonzero

components of the Ricci tensor:

R̂µν = qµν

[

1

a2W 8

[

WW ′′ − (W ′)2
]

− 3H2

]

R̂θθ =
aa′′ − (a′)2

a2W 8
(30)

R̂ηη =
1

a2W 2

[

aW 2a′′ + 4a2WW ′′ −W 2(a′)2 − 8 aWa′W ′ − 16 a2(W ′)2
]

.
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Numerical de Sitter solution

In terms of these variables the Lagrangian becomes

L = (x′)2 − (y′)2 + (z′)2 − κ2Q2 e2x +
ĝ2κ2

4
e2y − 12H2 e2y+z . (40)

We have set N = 1 but continue to keep in mind its role in determining the constraint. The

‘potential’ terms simplify further if we also redefine

X =
1

2
ln(κ2Q2) + x

Y =
1

2
ln(ĝ2κ2/4) + y (41)

Z = ln(48|H2|/ĝ2κ2) + z

and so

L = (X ′)2 − (Y ′)2 + (Z ′)2 − e2X + e2Y − ϵe2Y+Z . (42)

where ϵ = +1 for de Sitter and −1 for anti-de Sitter solutions. We now integrate the equations

of motion obtained from this lagrangian to obtain explicit solutions for the extra-dimensional

geometries. Since X has the equation of motion

X ′′ + e2X = 0 (43)

it decouples from the other variables. Its equation can be directly integrated to give

(X ′)2 + e2X = λ2
1, (44)

and so e−X = λ−1
1 cosh[λ1(η − η1)]. The remaining two nontrivial equations of motion become in

these variables

Y ′′ + e2Y − ϵe2Y+Z = 0

Z ′′ +
ϵ

2
e2Y+Z = 0 , (45)

along with the constraint λ2
1 − (Y ′)2 + (Z ′)2 − e2Y + ϵe2Y+Z = 0, whose solutions we obtain

numerically below.

In terms of these variables the asymptotic behaviour of the solutions assumed in previous

sections near the singularities is linear in η. For example, using eqs. (39) and (41) to write X in

terms of ϕ and W , and then using the asymptotic forms given by eqs. (10) and (11), we see

2X = ϕ+ 2 ln a+ ln
(

κ2Q2
)

≈ (q± + 2α±) ln r± ≈ ∓(q± + 2α±)η, (46)
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FIG. 1: Typical behaviour of Y as a function of η for de Sitter solutions (ϵ = +1). The function interpolates

between two asymptotically linear regimes. The gradient is always positive as η → −∞ and negative as

η → +∞.
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FIG. 2: Typical behaviour of Z as a function of η for de Sitter solutions (ϵ = +1). The solutions are

asymptotically linear with different gradients. For a suitable choice of initial data the gradient can change

sign as in Fig. 1.
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it decouples from the other variables. Its equation can be directly integrated to give

(X ′)2 + e2X = λ2
1, (44)

and so e−X = λ−1
1 cosh[λ1(η − η1)]. The remaining two nontrivial equations of motion become in

these variables

Y ′′ + e2Y − ϵe2Y+Z = 0

Z ′′ +
ϵ

2
e2Y+Z = 0 , (45)

along with the constraint λ2
1 − (Y ′)2 + (Z ′)2 − e2Y + ϵe2Y+Z = 0, whose solutions we obtain

numerically below.

In terms of these variables the asymptotic behaviour of the solutions assumed in previous

sections near the singularities is linear in η. For example, using eqs. (39) and (41) to write X in

terms of ϕ and W , and then using the asymptotic forms given by eqs. (10) and (11), we see

2X = ϕ+ 2 ln a+ ln
(

κ2Q2
)

≈ (q± + 2α±) ln r± ≈ ∓(q± + 2α±)η, (46)
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10D String on H(2,2) x S1

Cvetic et al 2003

Any solution to the 6D equations from:

From:

Can be uplifted to solutions of 10D (string) equations:

3.2 Numerical dS solutions

3.3 Stability analysis

4 6D Supergravity from String Theory

Starting from M-theory there are at least two independent ways to obtain the chiral 6D (1, 0) super-
gravity theory:

1. 11D Dimensional reduction on Hyperbolic space H
(2,2). Dimensional reduction of 11D super-

gravity to 10D IIA and further truncation to heterotic/type I strings and then compactify these
on H

(2,2)
⇥ S1 [2].

2. Flux F-theory compactification on elliptically fibered Calabi-Yau . Start from 11D supergravity
on a 3-complex dimensional elliptically fibered Calabi-Yau manifold to obtain 5D supergravity
and uplift to 6D [4].

We summarise the first approach in this section and leave next section for the F-theory approach..

4.1 String theory on Hyperbolic space H
2,2

⇥ S1

The 6D theory is obtained by a series of dimensional reductions and consistent truncations. At the end
it amounts to a dimensional reduction of the e↵ective action of type I/heterotic strings on H

(2,2)
⇥S1

where H
(2,2) is the 3D hyperbolic space determined by the real coordinates yi, i = 1, · · · , 4 subject to

the constraint y21 + y22 � y23 � y24 = 1 and S1 a circle of radius R.
We can start directly from the relevant heterotic/type I bosonic part of the Lagrangian (with

hatted quantities being 10D):

L10 = R̂⇤̂1�
1

2
⇤̂d�̂ ^ d�̂�

1

2
e��̂

⇤̂F̂(3) ^ F̂(3) (4.1)

Compactifying on the 4D space H
(2,2)

⇥ S1 with coordinates ⇢,↵,� for H(2,2) with

y1 + iy2 = cosh ⇢ei↵; y3 + iy4 = sinh ⇢ei� (4.2)

with 0  ⇢  1, 0  ↵,� < 2⇡ and use z as the S1 coordinate. The solutions found in [2] correspond
to the metric:

dŝ210 = (cosh 2⇢)1/4

e��/4ds26 + e�/4dz2 +

e�/4

2ḡ2

✓
d⇢2 +

cosh2 ⇢

cosh 2⇢
(D↵)2 +

sinh2 ⇢

cosh 2⇢
(D�)2

◆�
(4.3)

where D↵ = d↵� ḡA(1), D� = d� + ḡA(1). The antisymmetric field takes the form:

F̂(3) = H(3) +
sinh 2⇢

2ḡ(cosh 2⇢)2
d⇢ ^D↵ ^D� +

1

2ḡ cosh 2⇢
F(2) ^

�
cosh2 ⇢D↵� sinh2 ⇢D�

�
(4.4)

where H(3) the 6D antisymmetric tensor field strength, F2 = dA(1) and dH3 = 1
2F(2) ^ F(2).

Finally the dilaton in 10D �̂ (which from the I truncation of type IIA strings determines the string
coupling gs = he�̂i ) relates to the dilaton in 6D ' as:

e�̂ = (cosh 2⇢)�1/2 e' (4.5)

so weak string coupling corresponds to large ⇢ and/or large negative '. For the type I truncation
of IIB strings, the same ansatz holds with the exchange of the three form F(3) from NS-NS to RR
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In general the scalar fields come from the tensor multiplets and hypermultiplets. The ones from
the tensor multiplets parametrise the coset SO(1, nT )/SO(nT ) whereas those from the hypermultiplets
parametrise a quternionic manifold. Since we will be mostly interested on vacuum configurations, we
will ignore all of the fermion degrees of freedom and restrict to the simplest case nT = 1 and set the
scalars of the hypermultiplets to be constant which in practice means nH = 01. We will relax this
condition later on when we discuss F-theory and one hypermultiplet cannot be set to constant.

This is the action that was considered in the original paper of Salam and Sezgin. The Lagrangian
for this theory is then:

L6 = R ⇤ 1� ⇤d� ^ d��
1

2
e�'

⇤ F(2) ^ F(2) �
1

2
e�2'

⇤H(3) ^H(3) � 8g2e' ⇤ 1 (2.2)

with F(2) = dA(1), H(3) = dB(2) +
1
2F(2) ^A(1).

The bosonic equations of motion are:

RMN = @M'@N'+
1

2
e�'

✓
F 2
MN

�
1

8
F 2gMN

◆
+

1

4
e�2'

✓
H2

MN
�

1

6
H2gMN

◆
+ 2g2e'gMN

= @M'@N'+
1

2
e�'F 2

MN
+

1

4
e�2'H2

MN
�

1

4
⇤' gMN

⇤' =
1

4
e�'F 2 +

1

6
e�2'H2

� 8g2e' (2.3)

d
�
e�'

⇤ F(2)

�
= e�2'

⇤H(3) ^ F(2)

d
�
e�2'

⇤H(3)

�
= 0

with FMN defined as F(2) = FMNdxM
^ dxN , etc.

It is straightforward to see that the system has a classical scaling symmetry:

gMN ! !gMN ; e' ! !�1e'; L6 ! !2
L6 (2.4)

which leaves the equations of motion invariant. Notice also that Einstein’s equations get much sim-
plified when written as in the second line in terms of ⇤'.

When looking for maximally symmetric solutions in 4D we will then look for solutions with
H3 = 0. This simplifies substantially the search. The Salam-Sezgin solution corresponds to turning a
non-vanishing value for the flux of Fmn / ✏mn with m,n = 5, 6 labelling the 2 extra dimensions and the
metric ds2 = dxµdxµ + ds22 with ds22 corresponding to the geometry of a 2-sphere and µ, ⌫ = 0, 1, 2, 3.
Notice that for constant ', its equation is satisfied by cancelling the fluxes by the scalar potential and
the all the other equations are automatically satisfied. The solution is then R1,3

⇥ S2 with R1,3 the
four dimensional Minkowski spacetime and S2 the two-sphere.

The Salam-Sezgin solution was found to preserve N = 1 supersymmetry and since ' is constant,
it gives rise to a supersymmetric flat direction in 4D which is consistent with the classical scaling
symmetry. Notice that due to the runaway potential for ' does not allow the possibility of a maximally
symmetric solution in 6D. In some sense it asked for a compactified solution with maximal symmetry in
4D rather than 6D. This solution was shown to be the unique non-singular solution of these equations
[6].

3 4D dS, AdS and Minkowski from 6D Supergravity

Review the Burgess et al classic for solutions with singularities....

1We emphasise that the values of nT , nV and nH are restricted by the anomalous cancellation condition so our
analysis applies to any of their values satisfying this constrain.

– 3 –
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Then the 6D de Sitter solutions can be uplifted to 10D !!!
Non-compactness?



6D Supergravity from F-theory

where Kc is the Kähler potential for the complex structure deformations zκ and we have expanded

PΛA
B in terms of the Pauli matrices as

PΛA
B = P x

Λσ
x
A
B , (2.35)

for x = 1, 2, 3 . We note that for the SU(3) structure reductions we have considered this gives

PΛA
B =

ie
1
2Kc

16
√
V
eKΛ(Z

K + Z̄K)σ1A
B +

e
1
2Kc

16
√
V
eKΛ(Z

K − Z̄K)σ2A
B +

i

8V
eKΛξ

Kσ3A
B , (2.36)

where ZK are the scalars that appear in the expansion of Ω such that we may chose a basis in which

ZK = {1, zκ}.

To close this section let us also add the terms arising from a nontrivial background flux Gflux
4 .

Combining the gaugings (2.20) with the gauging induced by the non-vanishing eKΛ one finds

Dqu =

⎧

⎪

⎨

⎪

⎩

dΦ + 2AΛθΛ , if qu = Φ ,

dξ̃K +AΛeKΛ , if qu = ξ̃K ,

dqu , if qu ̸= Φ, ξ̃K .

(2.37)

The total potential may then be derived from (2.34) and (2.21). The modifications (2.37) encode the

deviations from a standard Calabi-Yau reduction of M-theory. In the next sections we will demonstrate

the up-lift of this five-dimensional gauged supergravity theory to six-dimensions. This will then be

interpreted as performing the M-theory to F-theory limit.

2.3 Circle reduction of gauged 6D supergravity

Having derived the 5D gauged supergravities obtained by M-theory compactifications we will now

turn to the F-theory side. The starting point will be a general 6D (1, 0) gauged supergravity [44, 45].

We will dimensionally reduce this theory on a circle and then determine the couplings by comparison

with the M-theory reduction.

The 6D theory is specified by a “pseudo action” in the sense that self-duality conditions for three-

form field strengths need to be imposed by hand after variation of the action. In the following we will

indicate 6D quantities by a ˆ. The 6D tensor multiplets contain a scalar ĵα and a two-form B̂α with

field strength Ĝα as bosonic degrees of freedom. The bosonic fields of the 6D hypermultiplets describe

four scalars q̂U each. The bosonic components of the 6D vector multiplets contain only the vectors

ÂI . These are in general non-Abelian with field strength F̂ I = dÂI + 1
2f

I
JKÂJ ∧ ÂK . At lowest order

in derivatives the pseudo-action is given by

S(6) =

∫

M6

[

1

2
R̂∗̂1− 1

4
ĝαβĜ

α ∧ ∗̂Ĝβ − 1

2
ĝαβdĵ

α ∧ ∗̂dĵβ − 1

2
ĥUV D̂q̂U ∧ ∗̂D̂q̂V

− 2Ωαβ ĵ
αbβCIJ F̂

I ∧ ∗̂F̂ J − Ωαβb
αCIJ B̂

β ∧ F̂ I ∧ F̂ J − V̂ (6)∗̂1̂
]

, (2.38)
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Then for the potential induced by the flux gaugings in 5D where (2.24) applies the 6D potential is

given by

V̂
(6)
flux =

1

32Ωαβ ĵαbβV̂2
C−1ijθiθj . (2.62)

This potential has a runaway direction for the scalars ĵα and V̂ and as a result the 6D theory effective

theory has no maximally symmetric solutions. We will discuss the non-maximally symmetric solution

which replace this in the next section.

We can also up-lift the gaugings induced in the reduction on the SU(3) structure manifold. As

before we compare the gaugings that are arise in the circle reduction (2.46) with (2.33) to find that

the only non-vanishing killing vectors of the 5D hypermultiplet target space are k
ξ̃K
i = eKi with all

other components of the killing vectors vanishing.

We can also consider the F-theory duals of these lifted SU(3) structure deformations. Here we find

that the gaugings of the 6D effective theories are caused in the IIB reduction by the presence of extra

massive U(1) symmetries. To see this we can note that when these symmetries are included there will

be an additional term of the from
∫

D7

ˆ̂C6 ∧ Tr( ˆ̂F ), (2.63)

where ˆ̂C6 is the Ramond-Ramond 6-form and these extra U(1) branes wrap new cycles Si on the base

B2. To reduce these extra terms to 6D we expand ˆ̂C6 = ẐK
4 ∧ iηαK , where η is a vector that projects

αK to a 2-form on the base, and then integrate over Si. This then gives rise to extra terms in the 6D

action of the form
∫

D7

ˆ̂C6 ∧ Tr( ˆ̂F ) =

∫

M6

ẐK
4 ∧ F̂ i

∫

Si

iηαK =

∫

M6

ẐK
4 ∧ F̂ ieiK . (2.64)

When the 4-form ẐK
4 is dualized to give the scalar ˆ̃

ξK this term then gives rise to gaugings present in

our 6D effective theory. We note from this that if we make the gauge choice as described in section

2.2 and expand αK into α0 and ακ then, as iηα0 is a (2, 0)-form and Si is a (1, 1)-cycle, we see that

e0i = 0 for the F-theory gaugings we describe here. These are then dual to a restricted set of SU(3)

structure deformations which also satisfy this constraint.

As before we can also compare the scalar potentials find that in this case

V̂
(6)
U(1) =

1

32Ωαβ ĵαbβ
C−1ij(

1

V2
eκieλjξ

κξλ +
eKc

V eκieλjz
κz̄λ) . (2.65)

When interpreted as coming from D7-branes the potential arises by expanding the Dirac-Born-Infeld

action. The first term of the potential depends on the Wilson line scalars, while the second term

depends on the D7-brane deformations. The latter indicates that certain D7-brane deformations are

actually massive since they require it to wrap a non-supersymmetric cycle.
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6D potential from D7 fluxes

h12 +1  hypermultiplets, h11-1 tensor multiplets



From 6D to 4D

So the equations we get are:

'
00 = Ṽ e

'�2�+2⌦+8� � 2C�02
e
�'�2⌦+2�

, (4.24)

�
00 = �k

2

4
e
�2�+8�+2� � 4Ṽ e

'�2�+2⌦+8�
, (4.25)

�00 = 3H2
e
2⌦+6� � 1

2
'
00
, (4.26)

⌦00 = �4C (�0)
2
e
�'�2⌦+2� � 1

8
k
2
e
�2�+8�+2� � 1

2
'
00
, (4.27)

�00 = �0
'
0 + 2⌦0�0 � (�0)

2
+

k
2

32C
e
'�2�+2⌦+8�

. (4.28)

This together with the constraint above and the general result from the second derivative equa-
tions, namely:

�
00 = 2⌦00 � 3'00 (4.29)

and the asymptotic behaviour at large ⌘ should simplify the numerical solutions.

4.3 Equations in terms of proper distance
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For a function F :
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⇣
⌦̇+ 4�̇

⌘
Ḟ
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where dot means d/dr.
Therefore writing all the equations in terms of proper distance r we can see that the constraint
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'�2�+2⌦+8�
, (4.25)

�00 = 3H2
e
2⌦+6� � 1

2
'
00
, (4.26)

⌦00 = �4C (�0)
2
e
�'�2⌦+2� � 1

8
k
2
e
�2�+8�+2� � 1

2
'
00
, (4.27)

�00 = �0
'
0 + 2⌦0�0 � (�0)

2
+

k
2

32C
e
'�2�+2⌦+8�

. (4.28)

This together with the constraint above and the general result from the second derivative equa-
tions, namely:

�
00 = 2⌦00 � 3'00 (4.29)

and the asymptotic behaviour at large ⌘ should simplify the numerical solutions.

4.3 Equations in terms of proper distance

Going from ⌘ to the proper distance r variable with dr = aW
4
d⌘ = e

⌦+4�
d⌘ we have the metric:

ds
2 = W (r)2qµ⌫dx

µ
dx

⌫ + a(r)2d✓2 + dr
2 = e

2�(r)
qµ⌫dx

µ
dx

⌫ + e
2⌦(r)

d✓
2 + dr

2 (4.30)

For a function F :

dF

d⌘
= F

0 = e
⌦+4�
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Field equations

Constraint

! =log volume,  # =log W,  $ = log a , % = log A H2>0 de Sitter

pillboxes picks up contributions from the pillbox surfaces, and provides a constraint relating the sign
of R̂4 to the near-source derivative of ':

Z

M2

d2y
p
g2 R̂4(x, y) = 2

I

@M2

dy nm

p
g2 g

mn@n' , (2.15)

where
p
g2 is the 2D volume element and @M2 is the union of the surfaces of the small pillboxes, on

which nm is the unit normal (pointing out of the source).
With these choices the Maxwell equation (2.5) integrates to give

F⌘✓ = Qa2 e' , (2.16)

for constant Q while the functions a, W and ' are obtained by integrating the scalar equation (2.4)

'00 +
2

2
Q2a2e' �

2g2

2
a2W 8e' = 0 , (2.17)

and the Einstein equations (2.6)

(µ⌫) :
⇣
lnW +

'

2

⌘00
= 3⇣H2a2W 6 (2.18)

(✓✓) :
⇣
ln a+

'

2

⌘00
= �2Q2 a2e' (2.19)

where primes denote di↵erentiation with respect to ⌘. Here ⇣ = ±1 and H is the maximally symmetric
4D geometry’s Hubble constant, in terms of which the curvature of the 4D metric gµ⌫ is Rµ⌫�⇢ =
⇣H2(gµ⇢g⌫� � gµ�g⌫⇢) (and so ⇣ = +1 for de Sitter space and ⇣ = �1 for anti-de Sitter space).

Eqs. (2.17) through (2.19) are to be read as evolution equations for stepping the three unknown
functions a, W and ' forward in ⌘ given initial conditions at some ⌘ = ⌘0. These initial conditions
must satisfy the first-order constraint coming from the (⌘⌘) Einstein equation,

(⌘⌘) : 6⇣H2a2W 6
�

4 a0W 0

aW
�

6(W 0)2

W 2
+

1

2
('0)2 +

2

2
Q2 a2e' �

2g2

2
a2W 8e' = 0 , (2.20)

from which the value of ⇣H2 can be read o↵ once the fields and their first derivatives are specified for
some initial value of ⌘. The scale invariance (2.7) of the full 6D field equations implies a one-parameter
family of solutions can be built from any specific solution, with

n
', a,W,H

o
!

n
'+ '0, a e

�'0/2,W,H e'0/2
o
, (2.21)

for '0 an arbitrary real constant. For the special case H = 0 this corresponds to a one-parameter
family of classical solutions all sharing the same Hubble rate, and so corresponding to a flat direction
(labelled by '0) of the 4D e↵ective theory that represents a compactification modulus.

Notice that (2.19) implies (ln a + 1
2')

0 is a monotonically decreasing function of ⌘ while (2.18)
implies (lnW + 1

2')
0 is monotonically increasing or decreasing depending on the sign of ⇣. Integrating

(2.18) specializes (2.15) to this geometry

3⇣H2

Z
⌘2

⌘1

d⌘ a2W 6 =
⇣
lnW +

'

2

⌘0

⌘=⌘2

�

⇣
lnW +

'

2

⌘0

⌘=⌘1

. (2.22)

This last equation has a simple 4D interpretation if integrated over the entire extra dimensions once
the definition

1

2
4

=
1

2

Z
d2x

p
g2 W 2 =

2⇡

2

Z 1

�1
d⌘ a2W 6 (2.23)
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Flat direcMon



Asymptotic solutions

4.3.1 Near brane solutions

Consider the behaviour close to r = 0 by assuming

' = q ln r

� = s ln r

� = w ln r (4.35)

⌦ = ↵ ln r

� = � ln r

Assuming k = 0 we get:

1

2
q
2 +

1

4
s
2 + 10w2 � 4w = 0

↵+ 4w � 1 = 0

�(q + 2↵� �) = 0 (4.36)

2� > q + 2↵

� > s+ ↵� 1

w < 1

The first three equations determine s,↵, � in terms of w, q. The next two put constraints on the q, w

space. It is interesting to notice that if the region w < 1 is allowed then these solutions automatically
include the H 6= 0 case.

We can be more explicit and substituting ↵ = 1� 4w and � = q + 2↵ = q + 2� 8w or � = 0. Let
us see. The quadratic equation can be written as:

40

✓
w � 1

5

◆2

+ 2q2 + s
2  8

5
(4.37)

Which defines the interior of an ellipsoid. This implies that

0  w  2

5
, � 2p

5
 q  2p

5
, �

r
8

5
 s 

r
8

5
. (4.38)

These conditions still leave plenty of room for solutions in the w, s, q plane. In particular we
have w < 1 and so the asymptotic solution near r = 0 is independent of the spacetime curvature
H

2. From the third equation in (4.40) we can see two branches depending on the values of �, either
� = 0 or � = q + 2↵ = q � 8w + 2. For � = 0 the constraints become q + 2 < 8w and s < 4w. The
intersections of these two planes with the interior of the ellipsoid define the allowed parameter space.
A complementary space is defined for the second solution � = q � 8w + 2 for which the constraints
become q + 2 > 8w and s < q � 4w + 2.

More generally we can consider:

' = q ln r + lnu

� = s ln r + ln v

� = w ln r + lnx (4.39)

⌦ = ↵ ln r + ln y

� = � ln r + ln z
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where u, v, x, y, z are constants. Instead of assuming that the derivative terms dominate we can
consider under which conditions the non-derivative terms are of the same order as the derivative
terms. That means all or some of them scale as 1/r2 Assuming k = 0 and that all scale as 1/r2 we
get:

1

2
q
2 +

1

4
s
2 � 6w2 � 4↵w +

6

x2
H

2 +
2Cz

2

uy2
�
2 � u

v2
Ṽ = 0

(↵+ 4w � 1)q � u

v2
Ṽ +

2Cz
2

uy2
�
2 = 0

(↵+ 4w � 1)s+
4u

v2
Ṽ = 0

(↵+ 4w � 1)w � 3

x2
H

2 + (↵+ 4w � 1)
q

2
= 0

(↵+ 4w � 1)� � (q + 2↵� �)� = 0 (4.40)

2� � q � 2↵ = 0

q � 2s+ 2 = 0

w � 1 = 0

In principle we have 8 equations for 10 unknowns:q, s, w,↵, �, u, v, x, y, z. However the last 5 unknowns
only come in 3 combinations x, z

2

uy2 ,
u

v2 . We then find a solution of these equations:

q = �2

9
, s =

8

9
, ↵ =

1

9
, w = 1, � = 0,

u

v2
Ṽ = �56

81
,

3H2

x2
=

224

81
(4.41)

with z
2

uy2 arbitrary.
Therefore we have found scaling solutions for which all the terms in the equations blow-up with

1
r
at the same rate, unlike the approximate solutions for which the derivative terms dominate.
Notice that this set of solutions assume that all terms scale as 1

r2
which is not necessarily the

general case. In particular for H = 0 there is no need to impose w = 1. For H = 0 we have

q = �2

9
, s =

8

9
, ↵ =

1

9
, w =

1

9
, � = 0,

u

v2
Ṽ =

8

81
(4.42)

with x and z
2

uy2 arbitrary. These conditions will also apply for H 6= 0 as long as w < 1 since then the
terms including H are subdominant. This means that only for the dS case we have two solutions one
with w = 1 and the approximate with w = 1

9 .

4.3.2 Numerical solutions

We can now start with these near brane solutions to provide the boundary conditions for a full fledge
solution for all values of the proper distance r. To solve numerically the equations we have imposed
the initial conditions in the near-brane region at r ⌘ r0 = 10�10, choosing the parameters in so that
the constraint is satisfied. The numerical value of the parameters is:

� = 0 , ↵ =
3

4
q =

1

2
, s ' 0.5863 , w = 0.0625 . (4.43)

All the solutions are divergent both at r = 0, where the brane is located and wawy from the brane
at r = re. We will interpret the second divergence as the presence of another brane-like object. Note
the exact value of re slightly varies in the three cases H2 = 0 and H = ±0.1:

H
2 = 0 : re ' 0.4722 , H

2 = �0.1 : re ' 0.4720 , H
2 = 0.1 : re ' 0.4723 . (4.44)
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5 Appendix

5.1 Di↵erential forms

Given a n-form A living in a D-dimensional spacetime

A = AA1···Andx
1 ^ · · · ^An , (5.1)

the ⇤-operator maps it into a D � n form:

⇤
�
dx

A1 ^ . . . dx
An

�
=

1

(D � n)!
g
A1B1 · · · gAnBn✏B1···BnBn+1···BDdx

Bn+1 ^ · · · ^ dx
BD , (5.2)

where

✏A1···AD =
p

|g|✏̃A1···AD ✏
A1···AD =

1p
|g|

✏̃
A1···AD , (5.3)

and ✏̃ is the Levi-Civita antisymmetric density (which only takes the values �1, 0 and 1), such that

✏̃01...D�1 = (�1)D�1
✏̃
01...D�1 = (�1)D�1

, (5.4)

and
✏̃⌫1...⌫nµn+1...µD ✏̃

µ1...µD = (�1)D�1(D � n)!�µ1...µn
⌫1...⌫n

, (5.5)
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where
�
µ1...µn
⌫1...⌫n

=
X

�Sp

sgn(�)�
µ�(1)...µ�(n)
⌫1...⌫n . (5.6)

Note that
⇤(⇤A) = (�1)n(D�n)+D�1

. (5.7)

Noting that

⇤1 =
1

D!
✏µ1...µDdx

µ1 ^ · · · ^ dx
µD =

=
p

|g|✏̃dx0 ^ · · · ^ dx
D�1 =

= (�1)D�1
p
|g|dDx . (5.8)

and using that
✏̃µ1...µD ✏̃

µ1...µD = (�1)D�1
D! , (5.9)

we can write the useful relation

dx
µ1 ^ · · · ^ dx

µD =
p
|g|dDx✏

µ1···µD = d
D
x✏̃

µ1···µD (5.10)
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EffecMve field theory of localized objects

*Field 

e.g. atomic nucleus!

The near-source singular behaviour found above raises two related questions, about both of which
EFT methods have something to say:

• Do near-source singularities imply an irretrievable breakdown of the approximations that allow
reliable predictions to be made for properties (like the 4D curvature) far from the sources?

• What does singular behaviour say about the nature of the gravitating sources whose presence is
responsible for the solution’s singularity?

E↵ective field theories (EFTs) shed light on both of these questions by systematizing the types of
couplings that can arise between small massive sources and surrounding ‘bulk’ fields, organizing them
in powers of small ratios of scale like R/� where R is the source’s size and � is the wavelength of
modes of the bulk field.

Several flavours of such EFTs exist. Theories like NRQED [54] – applied to bound states in QED
– or HQET [55] – applied to heavy-quark systems in QCD – formulate both the bulk fields and the
heavy sources as second-quantized fields. For QED this allows an e�cient comparison of graphical
methods in the high-energy relativistic theory (in which radiative corrections are computed) with
the low-energy nonrelativistic theory (in which bound states can be easier to describe). For QCD
a similar story applies, in which some symmetries (like chiral symmetries) are easier to see at high
energies but for which emergent approximate symmetries can simplify the low-energy description.
Variants of these theories have been used to explore how massive objects like black holes or neutron
stars interact gravitationally [56] (such as when inspiralling pairs emit gravitational waves) and these
also lend themselves to e�cient graphical expansions in the weak-field limit near flat space.

To be more precise. EFT methods can be used to describe the finite size e↵ects of nuclei in atomic
systems we may use two approaches:

• Second-quantised formalism. Consider the interactions between the electromagnetic field Aµ(x),
the electron field  (x) of charge e and mass m, and the nucleus field �(x) with charge Ze and
mass M � m. The e↵ective action can be written as S = SRen+SNRen with the renormalizable
action describing the standard minimal couplings:

SRen = SQED + S� = �

Z
d4x

⇢
1

4
Fµ⌫F

µ⌫ + [⇢⇢D +m] + � [⇢⇢D +M ]�

�
. (3.1)

Where Fµ⌫ = @µA⌫ � @⌫Aµ, Dµ = @µ � ieAµ , Dµ� = @µ� � iZeAµ�. The non-
renormalizable action captures the non-minimal interactions among the fields:

SNRen = �

Z
d4x

⇢
c̃d
2

�
��µ⌫�

�
Fµ⌫ + c̃s

�
  

� �
��

�
+ c̃v

�
 �µ 

� �
��µ�

�
+ · · ·

�
(3.2)

where �µ are the Dirac matrices and the Wilson coe�cients c̃d, c̃s, c̃v have dimension �1,�2,�2
respectively. As usual in EFTs these terms capture the e↵ects of integrating out small size
nucleus e↵ects, with c̃d capturing the anomalous nuclear magnetic moment, etc.

• First-quantised formalism. In this case both photon and electron are still described by second
quantized fields Aµ, . However since the atom has only one nucleus, the presence of the nucleus
is more e�ciently treated in terms of a first quantized approach in which the multi-particle states
of the field � are integrated out and only collective coordinates are relevant such as the centre-of-
mass position and spin. Concentrating on the position operator in terms of the nucleus worldline
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Where the ẏ = dy/ds and cs, cv are the Wilson coe�cients. In this case the path integral defining
the EFT is over the fields Aµ, and the nucleus coordinate yµ instead of Aµ, and �. This is
the reason this approach is known as point particle EFT or PPEFT. This is the formalism that
we will adopt here for extended objects rather than point particles for which the generalization
is straightforward.

3.1 Point Particle E↵ective Field Theory

We here follow the PPEFT approach of [24–26] that is better suited to describing classical solutions in
a way not tied to weak-field expansions. In this approach classical bulk equations are solved exactly
and control over calculations far from any sources is maintained despite the presence of singular near-
source configurations by carving out a small Gaussian pillbox of proper radius ✏ that excises each
source from the surrounding bulk spacetime. The influence of the sources on the surrounding fields is
then captured through appropriate boundary conditions applied at the boundaries of these pillboxes
(in much the same way that Gauss’ law specifies the amount of electric flux at the boundary of a
pillbox in terms of the net charge contained within).

This procedure allows the larger bulk properties to be understood without needing to know mi-
croscopic details about the sources, much as we can understand atomic energy levels in detail without
first completely understanding nuclei.5 It also shows how to identify the boundary conditions as a
function of the e↵ective couplings in the EFT describing the ‘point-like’ source, allowing successively
more accurate boundary conditions as more and more details (like higher order multipoles) of the
source become known.

More specifically, if the physical linear size, a, of the source is much smaller than the typical
extra-dimensional length scale, `, then one chooses ✏ to lie within the regime a ⌧ ✏ ⌧ ` for which
a multipole-like expansion of bulk fields obtained as powers of a/✏ can be matched to the boundary
conditions satisfied by the bulk fields in their asymptotic near-source limit ✏ ⌧ `. PPEFT methods
also show how renormalizations of these e↵ective couplings (even at the classical level along the lines
seen in [57]) give renormalization-group arguments that ensure nothing physical depends on arbitrary
features like the precise value of the size ✏ of the pillboxes, leaving only predictions organized by ratios
of the physical quantity a/` (for a review see [23]).

Although PPEFT arguments usually start with the EFT for the source and infer the near-source
boundary conditions that follow from it, running this argument backward also allows one to learn
what kinds of sources are consistent with the asymptotic near-source form of known bulk solutions
(like the ones described in previous sections). This gives useful but limited information because at
low energies the bulk fields only carry partial information about the nature of the source, similar to –
though a generalization of – the information carried about electromagnetic moments in the multipole
expansion of the field due to a charge distribution.

Electromagnetic interactions provide the simplest place to start, so consider a point-like static
electromagnetic source in D spacetime dimensions giving rise to a bulk electromagnetic field with

5The utility of the PPEFT formalism has been tested in some detail in calculations of how finite nuclear size influences
precision calculations of atomic energy levels [27–30].
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�ẏ2M � ZeẏµAµ + cs

p
�ẏ2

�
  

�
+ icv ẏ
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µ
�
 �µ 

�
+ · · ·

o
(3.3)
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Figure 1: Standard pillbox procedure to illustrate PPEFT. A cylindrical local source of radius a is surrounded by the
pillbox surface of radius ". E↵ective field theory is valid in the bulk at a distance ` from the centre as long as a ⌧ " ⌧ `.

pillboxes. Physical predictions (e.g. bulk energy levels or scattering rates for bulk fields from
the sources) depend on these integration constants and this is through their dependence on the
boundary conditions that the bulk fields learn about the presence of the sources.

• The other way to read eqs. (3.6), (3.7) and (3.8) is as Callan-Symansik equations that tell us how
the e↵ective couplings in Sb must depend on ✏ in order to ensure that the integration constants
(and so also physical observables) remain unchanged if we vary ✏ [24–26]. Observables should
remain unchanged as we do so because the size of the Gaussian pillboxes are arbitrary after all,
and so their precise positions should not matter. The ability to see explicitly why this happens
is indeed a nice feature of the PPEFT formalism. Physical predictions end up depending only
on the RG invariants that characterize the entire RG trajectory (✏, gi(✏)), rather than on the
e↵ective couplings gi(✏) and ✏ separately.

3.2 Source properties for 6D de Sitter solutions

In this section we follow [31] and use eqs. (3.6) through (3.8) to match the local near-brane asymptotic
behaviour found in the solutions of §2 to properties of the source action (see also [32, 60–67]). We
assume cylindrically symmetric bulk solutions and keep only the leading no-derivative terms of the
source action, which we assume has the form

Sb = �

Z
d4x

p
�� Lb(') = �

Z
d4x

p
�g W 4

b
Lb(') = �

Z
d4x

p
�g Tb(') , (3.10)

– 15 –

a
!

l

Figure 1: Standard pillbox procedure to illustrate PPEFT. A cylindrical local source of radius a is surrounded by the
pillbox surface of radius ". E↵ective field theory is valid in the bulk at a distance ` from the centre as long as a ⌧ " ⌧ `.

pillboxes. Physical predictions (e.g. bulk energy levels or scattering rates for bulk fields from
the sources) depend on these integration constants and this is through their dependence on the
boundary conditions that the bulk fields learn about the presence of the sources.

• The other way to read eqs. (3.6), (3.7) and (3.8) is as Callan-Symansik equations that tell us how
the e↵ective couplings in Sb must depend on ✏ in order to ensure that the integration constants
(and so also physical observables) remain unchanged if we vary ✏ [24–26]. Observables should
remain unchanged as we do so because the size of the Gaussian pillboxes are arbitrary after all,
and so their precise positions should not matter. The ability to see explicitly why this happens
is indeed a nice feature of the PPEFT formalism. Physical predictions end up depending only
on the RG invariants that characterize the entire RG trajectory (✏, gi(✏)), rather than on the
e↵ective couplings gi(✏) and ✏ separately.

3.2 Source properties for 6D de Sitter solutions

In this section we follow [31] and use eqs. (3.6) through (3.8) to match the local near-brane asymptotic
behaviour found in the solutions of §2 to properties of the source action (see also [32, 60–67]). We
assume cylindrically symmetric bulk solutions and keep only the leading no-derivative terms of the
source action, which we assume has the form

Sb = �

Z
d4x

p
�� Lb(') = �

Z
d4x

p
�g W 4

b
Lb(') = �

Z
d4x

p
�g Tb(') , (3.10)

– 15 –

a

PPEFT 
Goldberger, Wise, 

 Burgess et al

ApplicaMons to precision atomic levels, Helium 4…



symmetry because they are then just related by dimensional reduction: Scod1 = ⌦✏Sb, where ⌦✏ is the
area of the surface of the Gaussian pillbox.

In the end, the near-source boundary conditions that emerge for spherically symmetric sources in
the case of a codimension-two object (a particle in 3 spactime dimensions or a 3-brane in 6 spacetime
dimensions) is then easy to state for bulk scalar, Maxwell and gravitational fields [31]. For a Maxwell
field it is simply the codimension-two version of (3.5):
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where in the applications of interest here C✏ is the circumference of the circle of the Gaussian pillbox
in the two extra dimensions and the subscript on the right-hand side is meant to emphasize that fields
are regulated by evaluating them at r = ✏ (if the source position is r = 0). For scalar fields residing in
the bulk with kinetic energy is L = �

1
2

�2p
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through a brane action Sb[�] the analogous desired relation is
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where the integration is again about a small circle of proper radius r encircling the source situated at
r = 0 and the right-hand side is again evaluated at r = ✏.

Finally, we quote the metric matching condition in the special case that the metric near a source
can be written in the form ds2 = dr2+gij dxi dxj where r is the proper distance away from the brane,
and the surface of the gaussian pillbox is at fixed r. In this case this surface has extrinsic curvature
Kij =

1
2@rgij and the metric boundary condition becomes

lim
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where Kij is the extrinsic curvature of the fixed-r surface, for which the local coordinates are those
appropriate for surfaces of constant r: {xi, i = 0, 1, · · · , 4}. The final terms denoted ‘flat’ are the same
result evaluated near the origin of a space for which the location r = 0 is nonsingular.

It should be noted that this is not that useful an equation in the special case that i and j lie in
the ✓ direction that runs along the circumference of the circle C✏, since then it is not clear what to
use for the gij dependence on the right-hand side (since Sb is written as a world-surface action and
not as a codimension-2 action). For instance if

Sb =

Z

W

d4x
p
�� T (�) (3.9)

for �ab = gMN@axM@bxN the induced metric on a 3-brane in 6D and T the source tension, then its
dependence on e.g. g✓✓ is not specified. This is not in practice a problem, however, because the Einstein
equations in the r-r direction impose a constraint on the initial data that can be used when integrating
in the r direction and it is this constraint that in practice fixes quantities like �Sb/�g✓✓ (see below for
more details in concrete examples).

Eqs. (3.6), (3.7) and (3.8) can each be used in one of two complementary ways:

• The most straigtforward way is to regard ✏ and the couplings – like T [�(✏)] in (3.9) – to be
specified, in which case these equations furnish boundary conditions that help determine the
integration constants for the solutions to the field equations in the bulk, outside all of the
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pillboxes. Physical predictions (e.g. bulk energy levels or scattering rates for bulk fields from
the sources) depend on these integration constants and this is through their dependence on the
boundary conditions that the bulk fields learn about the presence of the sources.

• The other way to read eqs. (3.6), (3.7) and (3.8) is as Callan-Symansik equations that tell us how
the e↵ective couplings in Sb must depend on ✏ in order to ensure that the integration constants
(and so also physical observables) remain unchanged if we vary ✏ [24–26]. Observables should
remain unchanged as we do so because the size of the Gaussian pillboxes are arbitrary after all,
and so their precise positions should not matter. The ability to see explicitly why this happens
is indeed a nice feature of the PPEFT formalism. Physical predictions end up depending only
on the RG invariants that characterize the entire RG trajectory (✏, gi(✏)), rather than on the
e↵ective couplings gi(✏) and ✏ separately.

3.2 Source properties for 6D de Sitter solutions

In this section we follow [31] and use eqs. (3.6) through (3.8) to match the local near-brane asymptotic
behaviour found in the solutions of §2 to properties of the source action (see also [32, 60–67]). We
assume cylindrically symmetric bulk solutions and keep only the leading no-derivative terms of the
source action, which we assume has the form
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Z
d4x

p
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Z
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p
�g W 4

b
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(a) The function '(r) vs r. (b) The function �(r) vs r.

(c) The function ⌦(r) vs r. (d) The function �(r) vs r.

Figure 4: Plot of solutions to eqs. (5.23) with initial conditions chosen consistent with ⇣H2 > 0. All
four functions diverge both at r = 0 and at r = re.

5.1.3 Interpretation of the singularities

The singularities in the bulk solutions can again be matched to the action of the gravitating source
whose back-reaction is responsible for the singular behaviour, along the lines also given in §2.

We again assume a source action containing the fewest derivatives, as in (3.10), leading for unbent
sources to
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p
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b
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p
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The matching conditions that follow from eqs. (3.7), (3.6) and (3.8), specialized to the field equations
(5.2) and (5.3) implies the following near-source matching relation for the scalars
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which uses the near-source asymptotic solutions for ' and �. The metric matching conditions are
much as before, with
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which uses the near-source asymptotic solutions for ' and �. The metric matching conditions are
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which uses the near-source asymptotic solutions for ' and �. The metric matching conditions are
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where Ub is inferred from Lb using the constraint (5.25). Dropping non-derivative terms as subdomi-
nant in powers of r in the near-source limit yields
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where the last line uses the matching conditions (5.37), (5.38), (5.39) and (5.40) and defines the
dimensionless quantities Tb := 2Tb/(2⇡) and Ub := 2Ub/(2⇡) as before. Subscripts ' and � denote
di↵erentiation with respect to the corresponding field. Once solved for Ub this gives
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MORE TO SAY HERE? We need to say more: how to identify the brane tension and different

charges, etc.

5.2 A broader class of solutions

We consider now the case k 6= 0. The scenario 2. above. As mentioned above, this is a broader class
of solutions possible in the 6D theory that descends from F -theory.

The previous analysis was not general since we may consider the case that the U(1) gauge field for
which the fluxes are turned on may be the original one that determined the presence of the 6D scalar
potential and the Stuckelber behaviour for the field �. In particular, there are more terms in the field
equations that depend on k and we cannot set to constant the field � to start with if the gauge fields
are non-trivial.

We should then find the set of equations for the variables V := e�,', a := e⌦,W := e�,�, ⌧
besides the one for the gauge field F i

✓⌘
= @⌘A✓(⌘)i. This in practice adds another variable A✓ := e�(⌘)

assuming only one gauge field gets a vev. We may still generalise this further assuming more gauge
fields.

In the cylindrical case with coordinates ⌘ and ✓ we find the following eqs (considering constant ⌧
for the moment):
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where �µ⌫ = ĝMN @µxM@⌫xN is the induced metric on the source, which for an unbent static source is
simply the 4D metric components, ĝµ⌫ , from (2.13).

The last equality in (3.10) simply defines Tb(') = W 4
b
Lb(') where Wb = W (xb) is the warp factor

evaluated at the brane position. In general functions like W , ' or a might vanish or diverge at the
brane position (if this is idealized as being pointlike) and the PPEFT approach regularizes this by
replacing them by their values at the surface r = ✏ of the small Gaussian pillbox.

The resulting matching conditions are summarized in eqs. (3.6), (3.7) and (3.8), which specialized
to the action (2.3) implies the following near-source matching relation for the scalar ':
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, (3.11)

where r denotes proper distance away from the source and so satisfies

dr := ⌥aW 4 d⌘ , (3.12)

with the sign corresponding to whether or not d⌘ points towards or away from the source in the two
asymptotic regions.

The corresponding expressions for a and W come from the matching conditions for di↵erent
components of the metric, and for the geometry of (2.13) the (µ⌫) components of the metric matching
conditions are
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This is a familiar expression in the special case where !b = 0, in which case W asymptotes to a
constant W ! Wb in the near-source limit. Using the asymptotic expression a ' ab e�↵b|⌘| implies
the near-source extra-dimensional geometry of (2.13) becomes
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revealing a near-source conical singularity with defect angle that (3.14) states has size
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The matching condition that comes from the (✓✓) component of the metric gives
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where Ub is defined by Ub = �
1
2@Tb/@g✓✓. At first sight this seems not so useful because the dependence

of the source action on g✓✓ is usually not specified in expressions like (3.10) for the action of a pointlike
source in the extra dimensions. But a dependence on g✓✓ is implicit in any microscopic description of
a source, and the good news is that this dependence is imprinted in the bulk field equations through
the (⌘⌘) Einstein equation that gives the constraint (2.20), evaluated near the source.
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Source back reacMon:

PosiMve tensions!

To see what this implies explicitly, drop terms in (2.20) that are subdominant in powers of r in
the near-source limit yields (c.f. eq. (2.28))
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where the last line uses the matching conditions (3.11), (3.14) and (3.17) and defines the dimensionless
quantities Tb := 2Tb/(2⇡) and Ub := 2Ub/(2⇡) and the prime on Tb

0 denotes di↵erentiation with
respect to '. The point is eq. (3.18) can be solved to get Ub as a function of Tb and its derivative,

Ub =
1

3

"
(W 4

b
� Tb)�

r
(W 4

b
� Tb)2 �

3

4
(Tb 0)2

#
, (3.19)

both of which can be read o↵ from (3.10).
The root in (3.19) is chosen so that the result for Ub vanishes when Tb

0 = 0, since in this case the
source couplings do not break the shift symmetry (2.7) and so cannot lift the degeneracy in (2.21).
Indeed ref. [31] explicitly computes the scalar potential for this would-be flat direction in the e↵ective
theory obtained by compactifying to 4D, with the result

V e↵('0) = �

X

b

✓
Ub +

T 0
b

2

◆
, (3.20)

ensuring that the Friedmann equation computed in the 4D EFT agrees with (2.33) once the matching
conditions (3.11), (3.14) and (3.17) are used. Using (3.19) shows that this potential necessarily vanishes
when Tb

0 vanishes for both sources, corresponding to the flat direction (2.21).

4 Two stringy routes to 6D supergravity

When you come to a fork in the road, take it.

The previous sections describe in detail exact 4D de Sitter solutions to 6D (1, 0) gauged supergrav-
ity. It remains to lift these to solutions of field equations with well-established M-theory pedigrees,
which requires knowing how 6D (1, 0) supergravity can be obtained from higher dimensions. At present
there are two known ways to do so:

1. Dimensional reduction of 10D heterotic/Type I supergravity: 6D chiral supergravity can be ob-
tained by dimensionally reducing ten dimensional heterotic/type I supergravity on H

(2,2)
⇥ S1

where H
(2,2) is a three-dimensional hyperbolic manifold and S1 is a circle [21].

2. Flux F-theory compactification on elliptically fibered Calabi-Yau . 6D chiral supergravity can be
obtained from 10D type IIB supergravity via an F -theory reduction on an elliptically fibered
Calabi-Yau manifold manifod [22].

This section briefly sketches each of these approaches.

4.1 Type I/Heterotic uplifts

We summarise the first approach in this section and leave next section for the F-theory approach..
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of the low-energy 4D Newton constant, 2
4 = 8⇡GN , is used because together (2.22) and (2.23) imply

⇣H2 = 8
3⇡GN

⇣
lnW +

'

2

⌘0
�⌘=+1

⌘=�1
. (2.24)

This is recognizable as the 4D Friedmann equation, with the role of the 4D energy density being played
by the square bracket involving only the asymptotic derivatives of the combination W + 1

2'. This
expression can be shown to be completely consistent with the 4D Friedmann equation found within
the low-energy 4D EFT once its e↵ective scalar potential is carefully computed [18, 19, 31, 50, 51].

Explicit solutions to these equations with H = 0 are known in closed form [14–16]

W 2e' = e��3⌘ , W 4 =
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e�2�3⌘ cosh3[�1(⌘ � ⌘1)] cosh[�2(⌘ � ⌘2)] , (2.25)

with integration constants ⌘1, ⌘2, �1, �2 and �3 related by �2 =
p

�2
1 + �2

3. There is no loss of
generality in choosing �2 � 0, in which case it must satisfy �2 � |�1| (with equality if and only if
�3 = 0). A one-parameter family of solutions can be obtained by acting on this with the transformation
(2.21). The stability of these solutions is extensively explored in [52].

Solutions also exist for either sign of ⇣ and for nonzero H, though not analytically in closed form as
above. Several explicit examples with 4D de Sitter space (⇣ = +1 and H 6= 0) are obtained numerically
in [17].

2.2.3 Near-brane asymptotics

The solutions (2.25) are generically singular as ⌘ ! ±1 (as are also the solutions with H 6= 0), with a
curvature singularity when �3 6= 0 and a conical singularity when �3 = 0. The �3 = 0 solutions include
(but are not restricted to) the unwarped, constant-dilaton ‘rugby ball’ configurations of ref. [13] as the
special case where ⌘1 = ⌘2. These singularities are interpreted as signalling the presence of some sort
of a gravitating source, and so we explore the near-source asymptotic form following [31].

If the source is a codimension-two object then we must ask a ! 0 as it is approached (so that
circles of proper radius r that surround it also have circumferences that shrink as r ! 0). In the a ! 0
limit eqs. (2.17), (2.18) and (2.19) simplify to

'00
' (lnW )00 ' (ln a)00 ' 0 , (2.26)

and so for the sources at ⌘ = ±1 we have (respectively)

' ' ⌥⌘ q± , W ' W± e⌥⌘ !± and a ' a± e⌥⌘ ↵± , (2.27)

for independent real constants ↵b, !b and qb applying for the two limits, ⌘ ! ±1. The explicit ⌥ sign
is present so that the convention is that the functions W , a and e' all tend to zero at the position of
the source if the constants ↵±, !± and q± are positive (and so asking a ! 0 at each brane is equivalent
to requiring ↵± > 0). The constraint eq. (2.20) implies the relation

q2
b
= 4!b(2↵b + 3!b) , (2.28)

must hold separately for both choices b = ±.
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2'. This
expression can be shown to be completely consistent with the 4D Friedmann equation found within
the low-energy 4D EFT once its e↵ective scalar potential is carefully computed [18, 19, 31, 50, 51].

Explicit solutions to these equations with H = 0 are known in closed form [14–16]

W 2e' = e��3⌘ , W 4 =

✓
2Q�2

2g�1

◆
cosh[�1(⌘ � ⌘1)]

cosh[�2(⌘ � ⌘2)]
, F⌘✓ =

✓
Qa2

W 2

◆
e��3⌘

and
1

a4
=

✓
4g4Q3

�3
1�2

◆
e�2�3⌘ cosh3[�1(⌘ � ⌘1)] cosh[�2(⌘ � ⌘2)] , (2.25)

with integration constants ⌘1, ⌘2, �1, �2 and �3 related by �2 =
p

�2
1 + �2

3. There is no loss of
generality in choosing �2 � 0, in which case it must satisfy �2 � |�1| (with equality if and only if
�3 = 0). A one-parameter family of solutions can be obtained by acting on this with the transformation
(2.21). The stability of these solutions is extensively explored in [52].

Solutions also exist for either sign of ⇣ and for nonzero H, though not analytically in closed form as
above. Several explicit examples with 4D de Sitter space (⇣ = +1 and H 6= 0) are obtained numerically
in [17].

2.2.3 Near-brane asymptotics

The solutions (2.25) are generically singular as ⌘ ! ±1 (as are also the solutions with H 6= 0), with a
curvature singularity when �3 6= 0 and a conical singularity when �3 = 0. The �3 = 0 solutions include
(but are not restricted to) the unwarped, constant-dilaton ‘rugby ball’ configurations of ref. [13] as the
special case where ⌘1 = ⌘2. These singularities are interpreted as signalling the presence of some sort
of a gravitating source, and so we explore the near-source asymptotic form following [31].

If the source is a codimension-two object then we must ask a ! 0 as it is approached (so that
circles of proper radius r that surround it also have circumferences that shrink as r ! 0). In the a ! 0
limit eqs. (2.17), (2.18) and (2.19) simplify to

'00
' (lnW )00 ' (ln a)00 ' 0 , (2.26)

and so for the sources at ⌘ = ±1 we have (respectively)

' ' ⌥⌘ q± , W ' W± e⌥⌘ !± and a ' a± e⌥⌘ ↵± , (2.27)

for independent real constants ↵b, !b and qb applying for the two limits, ⌘ ! ±1. The explicit ⌥ sign
is present so that the convention is that the functions W , a and e' all tend to zero at the position of
the source if the constants ↵±, !± and q± are positive (and so asking a ! 0 at each brane is equivalent
to requiring ↵± > 0). The constraint eq. (2.20) implies the relation

q2
b
= 4!b(2↵b + 3!b) , (2.28)

must hold separately for both choices b = ±.
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Boundary condiMons from pillbox



Conclusions
•Explicit (numeric ) (A)dS soluMons of 6D Supergravity 

•Embedding of gauge 6D supergravity in String Theory 

•SoluMons uplifed to string soluMons 

•SingulariMes have brane-like properMes (power of PPEFT) 

•Open quesMons



Thank you !!!


