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Minkowski space
(EFTs connected by a moduli space)

Distances in AdS/CFT

* New corners: Non-critical strings

* Absence of scale separation in AdS

Generalised distance beyond moduli spaces
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Tower and species vectors

Story of success for the Distance conjecture: m ~ mge ¥4 [Ooguri-Vafa’06]

Vma le

Maq

Tower vector:

Q : labels number of light towers

VA
Species vector: G
AQG

k% scale at which the local QFT

description breaks down

The exponential rate of the tower along the
direction ¢ is given by moduli
space
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Towers in Asymptotically Minkowski Space

So far, all string theory examples satisfy the Emergent String Conjecture,
so the leading tower is (in some dual frame) either: [Lee,Lerche,Weigand’19]
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Towers in Asymptotically Minkowski Space

The microscopic nature of the tower constrains the lengths of the tower
vectors (and therefore, the exponential rate of the masses)

but also the angles and the full geometry of their convex hull (frame simplex)

[Etheredge et al’24] Vi )
Vm d+n—2
mi KK tower: — | =
m n(d — 2
(without warping)
convex hull string tower: Vm| 1
m d— 2
-~ —alAop
Mtower ™~ 1100€ d = space-time dimension
\V Vims N, = number of extra dimensions
oa=—"-"
m m2
° ° ° 1
Convex Hull Distance Conjecture with Qmin = [Calderon-Infante,Uranga,IV'20]
d =7 Etheredge et al’22
[ g ]

(i.e., d tower with exponential rate o > ay,i, along any geodesic of this plane)



Towers in Asymptotically Minkowski Space

These constraints also hold for asymptotically Minkowski spaces
(even if there is a runaway potential):

We are studying the convex hull of the towers

: : : : V4
in 4d N=1 string compactifications
Interesting interplay with BPS EFT strings
[Grieco,RuizV'ongoing] ~ see Alessandra Grieco’s talk b — e

(Thursday)

Novel cosmological scenarios of transient acceleration using the
towers of states

[Casas,Montero,Ruiz’24] see Ignacio Ruiz’s talk (today)



2) AdS space

[Calderon-Infante,lV’ ongoing]
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Distance Conjecture in CFTs

Consider AdS;/CFTy 4

Bulk moduli space <——> Conformal manifold  (space of exactly marginal couplings)

field metric <— Zamolodchikov metric 1z — ¥°*{0:(z)0;(y)) = gi;(t")

Distance conjecture implies:

3 infinite tower of operators saturating the unitarity bound at every
infinite distance limit measured by Zamolodchikov metric, such that

—od / / [Perlmutter,Rastelli,Vafa,|V’21]
fYJ ~ € « (Tﬂ- ) as d(T, T ) —> OO  [Baume,Calderon-Infante’21]

anomalous dimension \) distance measured by Zamolodchikov metric

YJ = A — Aunitarity
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Distance Conjecture in CFTs

It works in all known examples (even beyond holographic CFTs!)

not proven yet
(supported by all
known examples)

>

Infinite distance < Infinite tower

provewn in

[Baume,Calderon-Infante’23] for higher spin gap in d>3
[Ooguri,Wang24] for scalar gap in d=3

What is the nature of the tower?

Is the Emergent String Conjecture still satisfied? (KK or critical string?)

For d =3 : Tower of scalar modes [Kontsevich,Soibelman’00] [Acharya,Douglas’06]

For d > 3 : Tower of higher spin modes “CFT Distance conjecture”

[Perlmutter,Rastelli,Vafa,IV’'2 1] (see also [Baume,Calderon-Infante’21])
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Classification of Towers in d>3

Let us focus on 4d SCFT (N = 1,N =2, N =4) (see though [Bobev et a"23])

(they are the only known examples of d>2 non-compact conformal manifolds)

All known infinite distance limits are weak coupling limits:

gy — 0 il CFTiee X CFT’  [PerimutterRastelliVafa V2]

(see also [Baume,Calderon-Infante’2[])
[Maldacena,
ZhiboedoVv’| 1]
. . central charge
Higher spin tower (
—a\ . 2(3
Miower ~ Moe~ *2? with  « = \/ ;
dimG

K) gauge group getting free
No pure decompactification limits, always higher spin operators (J > 2)

Do the higher spin fields always correspond to a critical string becoming
tensionless in the bulk?
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2c 1

Exponential rate of the higher spin tower: o = \/ =

dimG , +/4a/c— 2
J

Consider all large N 4d SCFTs with simple gauge factor:

We get only three values!

1
) a=—F7 for & =1
2 C
7 a 13 see Jose Calderon-Infante’s talk
2) a=\4/-—= for — = —
12 C 14
2 a 7
3 Y rop Lo L
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We compute the thermal partition function to show that they have a
different Hagedorn-like density of states (different Haggedorn temperature)

p(E) ~ €E/TH , TH — TH(CL/C) — TH(OJ) [Calderon-Infante,lV’ ongoing]
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Exponential rate of the higher spin tower: o = \/ =
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Consider all large N 4d SCFTs with simple gauge factor:

We get only three values!
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| o= —— for — =1 critical string in all Einstein theories
) V2 C » °

7 a 13 see Jose Calderon-Infante’s talk
2) a=1/— for — = —
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* non-critical strings

2 a 7 in non-Einstein theories
3) a=\/z for — = =

3 c 8

We compute the thermal partition function to show that they have a
different Hagedorn-like density of states (different Haggedorn temperature)

p(E) ~ €E/TH , TH — TH(CL/C) — TH(OJ) [Calderon-Infante,lV’ ongoing]
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Critical string limit

If the bulk dual is Einstein gravity ' the higher spin tower always

(so that a=c) comes from the critical string

How is it compatible with

1 L
Exponential rate;: a = — Vm 1 1
i V2 — !

m | Vd—2 /3

* Quantization of the string changes in AdS

i TN

™m
[ ] a:
™m

-t is the projection on the
conformal manifold

but Tn(RS5agS)<_> m(NagYM)



Convex Hull in N=4 SYM

Let us focus on N=4 SYM / AdS5 X 55 [Calderon-Infante,lV’ ongoing]
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Convex Hull in N=4 SYM

Let us focus on N=4 SYM / AdS5 X S5 [Calderon-Infante,lV’ ongoing]

* Field theory pert.regime: )\ < 1 * Supergravity regime: A > 1

T, = M3 gl R
m ~ /T o (21 \/@>

Mgtr \/§7 12
ﬁmHS — é ﬁTns’cr . 1
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Convex Hull in N=4 SYM

Let us focus on N=4 SYM / AdSs x S°

* Field theory pert.regime: )\ < 1

2
v~ Ngym .
~ VmHS . ( 1 1 )
M~ 273 MHs V2" /30
Vs _ /8
mus |V 15
A
N sugra
R _ M_51N2/3 ﬁmstr
p,
2 TMstr
9s = 9y m

[Calderon-Infante,|lV’ ongoing]

e Supergravity regime: A > 1
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Convex Hull in N=4 SYM

Let us focus on N=4 SYM / AdSs x S°

* Field theory pert.regime: )\ < 1

v~ Ngym .
~ VmHS . ( 1 1 )
M~ 273 MHs V2" /30
Vs _ /8
mus |V 15
A
N sugra
R _ M_51N2/3 ﬁmstr
P,
2 MMstr.
9s = 9y mr
A= 912/MN

[Calderon-Infante,|lV’ ongoing]

e Supergravity regime: A > 1

2  1/2p—5/4
TS — Mp75 gS/ R 5/
ﬁmstr 1 \/@
~ A/ — > ==
m TS Mty <2\/§7 12 )
ﬁrrnstr L L
Mgty B \/g
%..o“'éonst.
Results from
< field theory “integrability as

A changes
Yeusp (M)
m~ \/NQ/S

see e.g. [Dorigoni, Hatsuda’ | 5]
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Convex Hull and Scale Separation

Let us plot the convex hull of all the light towers, including the KK towers

mikRaas ~O(1) —> MKk ~ N7, Vmkx _ ( 2\/7>

Rags ~ RS5 MKK 15

_ A const. It satisfies taxonomy
’ rules for the towers
field theory .
It also satisfies the CH DC
(it includes the ball of radius
! mpgs \/
>
gy m

1
The sharpened bound for the Distance conjecture « = Ji—3
is satisfied for every infinite distance direction

It would be violated if the AdS vacuum was scale-separated Rxx < Rags
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implies that holographic AdS spaces with a conformal manifold
(namely, 5d AdS spaces with 8 or more supercharges)
cannot be scale separated
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Convex Hull and Scale Separation

1
. . . >
The Convex Hull Distance Conjecture with « = Jd 2

implies that holographic AdS spaces with a conformal manifold
(namely, 5d AdS spaces with 8 or more supercharges)
cannot be scale separated

Here we are using the moduli space distance

but can we generalize the notion of distance including a scalar potential?



3) Generalized distance with a potential

[Mohseni,Montero,Vafa,IV’'ongoing]
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Distance between theories

Very challenging, many
attempts...

[Douglas’ | 3][Bachas et al’| 3][Luest,Palti,Vafa’ | 9]
[De Biasio,Luest et al,20-22][Stout’22]
[Basile,Montella’23][Li,Palti,Petri’23-24]

[Shiu, Tonioni,Van Hemelryck,Van Riet’23-24]

[ Tonioni,Van Riet’'ongoing]...

Wish list:  « A notion of metric and geodesics in the space of theories

* It recovers moduli space distance if V=0

Let us take inspiration on the cobordism conjecture: [McNamara,Vafa'19]

Any two d-dim theories are connected by a finite energy domain wall

[Mohseni,Montero,Vafa,|V’ongoing]
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V A
Or
¥
>
-
¢i ¢f (spatial coordinate)
Ipw = / Tqb ¢) > 0 since minimal tension occurs for

At 00 — pg — 0
minimized for qb T) = ¢o + \/2pET



Distance between theories

Let us start with V=0 (a moduli space)

V A
Or
¥
>
-
¢i ¢f (spatial coordinate)
Ipw = / Tqb ¢) > 0 since minimal tension occurs for

At 00 — pg — 0
minimized for qb T) = ¢o + \/2pET

I'pw _ As

5 recovers moduli space distance!
PE

Define A =



Distance between theories

Let us add a potential between two Minkowski vacua (ignoring gravitational effects):

VA

CT(pg) 1 [
5= o m/ V2V + pe)ds

T'(pE) is the minimal euclidean action
for a path of energy pE
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T'(pE) is the minimal euclidean action
for a path of energy pE
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Distance between theories

Let us add a potential between two Minkowski vacua (ignoring gravitational effects):

\/Q,OE \/Q,OE bi
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Let us add a potential between two Minkowski vacua (ignoring gravitational effects):

\/Q,OE \/2,0E bi

T'(pE) is the minimal euclidean action
for a path of energy pE

¢, Py
1.
* This is known as Mapertuis action principle Sy = /dT (2¢2 4 V) — /pEdT

* |t provides a well-behaved notion for a metric: Gi; = gi; (1 + p_> (Jacobi metric)
E

(the distance is positive definite, symmetric and satisfies triangular inequality)

* It recovers moduli space distance if V=0
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* It depends on the euclidean energy scale pg such that: | Thw
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Distance between theories

Let us include gravitational effects and consider e.g. two AdS vacua:
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Let us include gravitational effects and consider e.g. two AdS vacua:
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Let us include gravitational effects and consider e.g. two AdS vacua:
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Euclidean Einstein eqs + eom for scalar: AX = /a(l —V/A) with A(¢;) =A; >V (¢;)

* It depends on the scale A; )r If A;,>V : A—= A¢ recovers moduli space distance

| _ 1 v .
If Aif=Viy :a- o (710) recovers AdS distance
’ [Luest,Palti,Vafa’ 9]

* Not a distance in the mathematical sense
(unless in the SUSY case where there is a DWV solution with A; ; =V, ¢)



¢ The microscopic nature of the tower constrains the value of the
exponential rate of the towers and how different limits fit together in
moduli space

“* We start a classification of infinite distance limits in the conformal
manifold of 4d SCFTs, obtaining non-critical tensionless string limits

1
d —2 in holographic
AdS spaces (with a conformal manifold) if they are not scale separated

¢ The Convex Hull Distance Conjecture with « =

“* We propose a notion of distance in the presence of a scalar potential
inspired by the cobordism domain wall

/. /m./



back-up slides



Different regions of the moduli space described by different perturbative
descriptions related by dualities

My
tower of states

becoming all light |
mi

m(P) ~m(Q)e”*>?

(Distance conjecture)
[Ooguri-Vafa’06]

What are the possible descriptions!?

How can they be combined? What are the possible dualities?



Example: 10d Type IIA

One dimensional moduli space: S = M
_ ¢
gs = €

Tower of oscillator
string modes

/dl%\/?g (%R - i(a(p)Q -+ >

species scale

Tower of DO branes
(M-theory KK tower)

@< M 710

gs — OC

Type lIA
1
As gs — 0 » MS — Mp,lO Q;M Mp,lO €eXp (_ﬁA¢>
M




Frame simplex

The towers generate a frame simplex (convex hull of the tower vectors)

to which the species scale is orthogonal =
G=—
— A A L mr,:
A 4 b CQ 1] t -

Stringy phase Planckian phase
AQG — MS AQG = Mp,D

The geometry is rigid under variations of the direction of the infinite distance limit

(as long as we do not break the assumption of regularity and we stay inside the cone)

We can associate a frame simplex to each duality frame



Tower polytopes

In certain cases (e.g. if there is an asymptotically flat slice of the
moduli space) we can combine duality frames by gluing individual
frame simplices to form a full polytope

CKKl Cosc CKKl

_’
® COSC

® CKKl

(KK, (KK,

For example:

M-theory on T?




Classification of 2d polytopes

This puts constraints on the structure of dualities of the moduli space

d=9 d=38

I

Example:
Classification of

2d polytopes ==
(with Dpax = 11))

5
Po) = o, s

The sharpened
DC is satisfied
1

>
Y= =2

[Etheredge et al’22]

I 6,1m)
d =6 (extra)

following the
Convex Hull

Distance Conjecture
[Calderon-Infante,Uranga,|V’20]

6 x1)

6 v1m)

Many arise in string theory but others are new!

(similar story for species polytopes)



Classification of Infinite Distance Limits in d>2

| et us focus on Ade+1/0FTd with d > 2 [Perlmutter,Rastelli,Vafa,IV'21]
(see also [Baume,Calderon-Infante’21])

In the free limit gypr >0 —> O, =Tr(F? +...) = 4;” Y
9y 2T
By perturbation theory:
ds® = 3? drdr as Im7m — oo B2 = 24 dimG
(Im7)?
) d(t,7") \ gauge group getting free
o~ Fgtag ~ F) e (25

If there is a weakly coupled AdS dual, it implies:

o - 4 b
Infinite distance limits 6 Tower of higher spin fields with an
at fixed AdSs radius exponential rate:
1
9%¢ = —= for4d N=2
Lower bound for ! o = \/ : V3
dimG 1
=35 for 4d N=1
- _/




Classification of Infinite Distance Limits in d>2

[Bhardwaj, Tachikawa’| 3] [Razamat, Sabag, Zafrir’20]

Consider the full classification of 4d SCFTs with large N and
simple factor for the gauge group G = SU(N),USp(2N), SO(N)

N =2 N =1

a 0 e G Theory c o

ypermuitiplets & o

BN .\ fd i - SU(N) | Table 2, #1 51(TN? — b) Vs

() un 0 SwAC Tl e

BN Table 2, #5 57(6N° + 3N —5) 7

SU(N) | 1 asym, N + 2 fund ﬁ(7N2—|—3N—4) \/% . . =

" » 1 SU(N) | Table 3, #4 51 (TN —4) 15

SU(N) | 2 asym, 4 fund 5(3N“ 4+ 3N - 2) 5 SUY) | Table 5, #4 1 (N7 _3) \/g
1 2 7

RN | 2sym, N —2fund | 5 (TN" —3N —4) | v/ USp@N) | Table 12, #1 | L(14N? + 15N — 1) | /T
1 2 1

SU(N) | 1 sym, 1 asym 5(3N* - 2) % USp(2N) | Table 13, #9 | LAN2+8N—1) | L

USp(2N) | 4N + 4 5 fund §IN(4N +3) \/g USp(2N) | Table 13, #10 | L (14N2 4+ 21N —2) | /%

USp(2N) | 1 asym, 4 fund H(6N? +9N — 1) % SO(N) | Table 18, #1 | L(7TN? - 21N —4) &

SO(N) | N — 2 vect HN(2N - 3) 3 SO(N) | Table 18, #2 | &(7TN? — 15N —2) o

BN Table 18, #3 | L(AN2-9N -1) | /2




Example of running decompactification




SO(32) slice E8XES8 slice

P
Het-KK C

M-theory

Het-wind

Het-wind




