Massive IIA vacua with dynamical open strings

Padova, StringPheno 2024

Based on:

2406.15310 [hep-th]

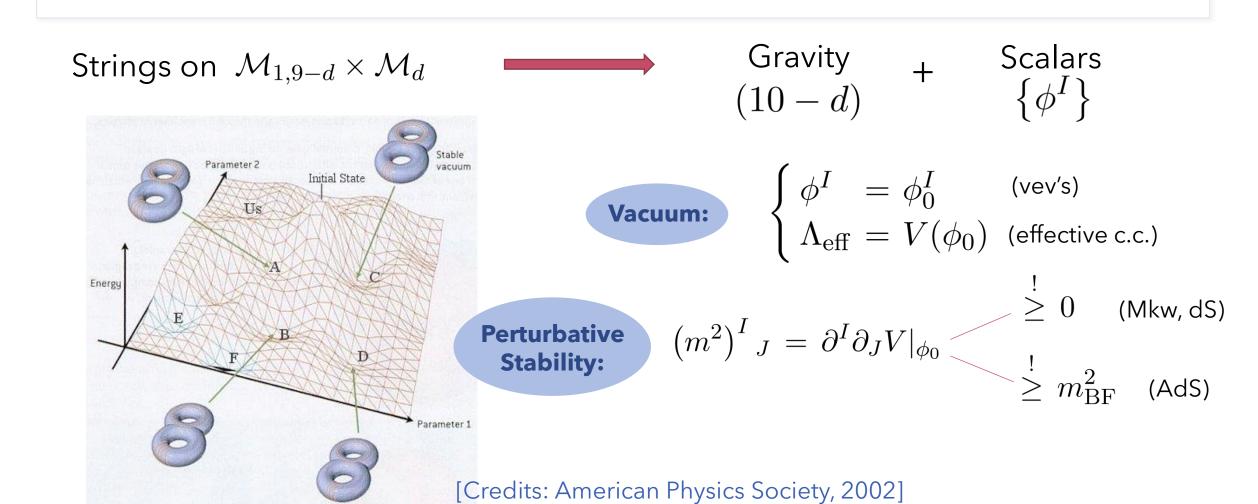
with J.R. Balaguer, V. Bevilacqua,

J.J. Fernandez-Melgarejo, & G. Sudano

Outline

- Introduction & Motivation
- Review of Op/Dp systems
- Gauged half-maximal 4D supergravity theories
- A comment on Swampland constraints
- Non-Abelian brane actions & reductions thereof
- An explicit example: mIIA with O6/D6
- Vacua analysis
- Perturbative control

Flux Compactifications



Why open strings? (we need D-branes...)

A HARD question because...

 Effectively working at finite alpha prime and hence it is not well understood...

A RELEVANT question because...

- It may determine the ultimate string Landscape (open+closed strings need to be consistently coupled in a quantum regime)
- It may shed a light on AdS/CFT beyond decoupling limit

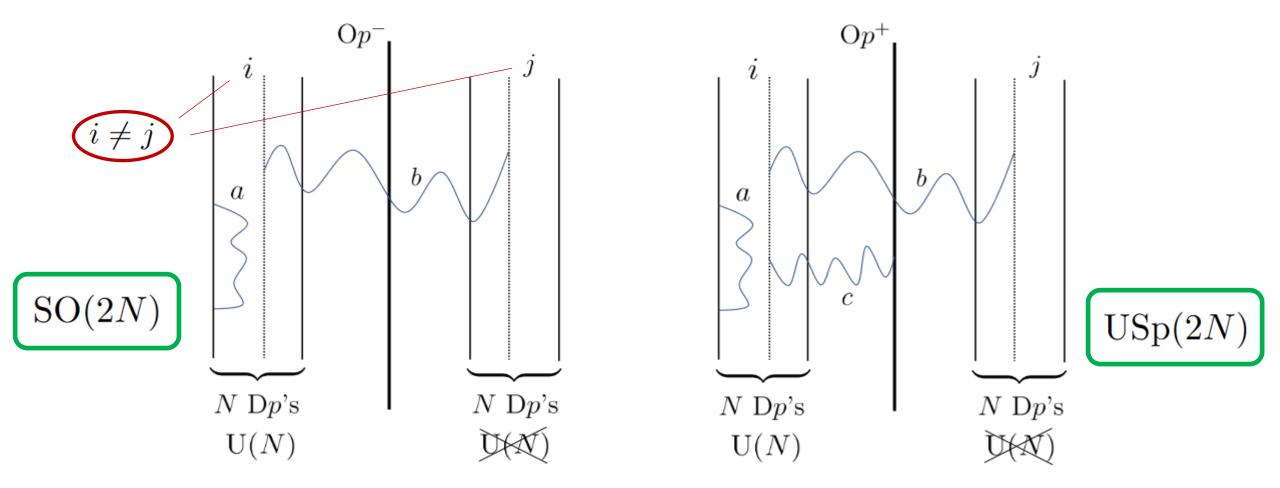
Non-perturbative formulations?

String Field Theory may give a hope?

Today:

Be happy with an **EFT** description

A recap on Op/Dp configurations



UV finiteness in flat space, in absence of fluxes...

$$(N_{\mathrm{D}p} - N_{\overline{\mathrm{D}p}}) \stackrel{!}{=} 2^{p-5}(N_{\mathrm{O}p^-} - N_{\mathrm{O}p^+})$$
 (tadpole cancellation)

The open string sector gauge groups are...

$$G_{\text{YM}} = \left(\prod_{a} \text{U}(N_a)\right) \times \left(\prod_{b} \text{SO}(2N_b)\right) \times \left(\prod_{c} \text{USp}(2N_c)\right)$$

The corresponding number of vector multiplets being

$$\mathfrak{N} \equiv \sum_{a} N_a^2 + \sum_{b} N_b (2N_b - 1) + \sum_{c} N_c (2N_c + 1)$$

Review of gauged N=4 supergravities in 4d

[Schoen, Weidner 2006]

Ungauged global symmetry:

$$G_{\text{global}} = \text{SL}(2, \mathbb{R}) \times \text{SO}(6, 6 + \mathfrak{N})$$

Consistent deformtions of the ungauged theory are encoded in the embedding tensor...

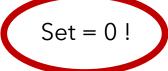
 $\Theta \in (2,\square) \oplus (2,\square)$

Irrep's of

 $G_{\text{global}} = \text{SL}(2, \mathbb{R}) \times \text{SO}(6, 6 + \mathfrak{N})$

Extra VM's from open strings!

Subject to the following quadratic constraints (QC)



$$f_{\alpha R[MN} f_{\beta PQ]}^{R} = 0 , \qquad \varepsilon^{\alpha \beta} f_{\alpha MNR} f_{\beta PQ}^{R} = 0 .$$

Induced scalar potentials...

The scalar fields span

$$\mathcal{M}_{\text{scalar}} = \underbrace{\frac{\text{SL}(2, \mathbb{R})}{\text{SO}(2)}}_{M_{\alpha\beta}} \times \underbrace{\frac{\text{SO}(6, 6 + \mathfrak{N})}{\text{SO}(6) \times \text{SO}(6 + \mathfrak{N})}}_{M_{MN}}$$

The **potential** reads

$$V = \frac{1}{64} f_{\alpha MNP} f_{\beta QRS} M^{\alpha \beta} \left[\frac{1}{3} M^{MQ} M^{NR} M^{PS} + \left(\frac{2}{3} \eta^{MQ} - M^{MQ} \right) \eta^{NR} \eta^{PS} \right] - \frac{1}{144} f_{\alpha MNP} f_{\alpha QRS} \varepsilon^{\alpha \beta} M^{MNPQRS} .$$
Object match

Swampland constraints on matter coupling

[Kim, Tarazi, Vafa 2020]

So far the number of VM's is **unspecified** in

$$\mathcal{M}_{\text{scalar}} = \underbrace{\frac{\text{SL}(2, \mathbb{R})}{\text{SO}(2)}}_{M_{\alpha\beta}} \times \underbrace{\frac{\text{SO}(6, 6 + \mathfrak{N})}{\text{SO}(6) \times \text{SO}(6 + \mathfrak{N})}}_{M_{MN}}$$

Even though lower dimensional theories are less constrained by anomalies...

10-d

$$r_G \le 26 - d$$

4d

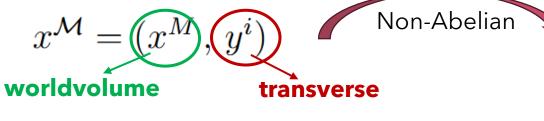
$$\mathfrak{N} \leq 16$$

Also expected to be **even!**

Non-Abelian brane actions & reductions...

[Myers 1999; Choi, Fernandez-Melgarejo, Sugimoto 2018]

Work in static gauge:



$$S_{\mathrm{D}p}^{\mathrm{DBI}} = -T_{\mathrm{D}p} \int d^{p+1}x \operatorname{Tr}\left(e^{-\hat{\Phi}}\sqrt{-\det(\mathbb{M}_{MN})\det(\mathbb{Q}^{i}_{j})}\right)$$

$$\lambda \equiv 2\pi \ell_s^2$$

$$M_{MN} = P\left[\hat{E}_{MN} + \hat{E}_{M}\right]$$

$$\mathbb{M}_{MN} = P\left[\hat{E}_{MN} + \hat{E}_{Mi}(\mathbb{Q}^{-1} - \delta)^{ij}\hat{E}_{jN}\right] + \lambda \mathcal{F}_{MN} ,$$

$$\mathbb{Q}^{i}_{j} = \delta^{i}_{j} + i\lambda[Y^{i}, Y^{k}]\hat{E}_{kj} .$$

$$S_{\mathrm{D}p}^{\mathrm{WZ}} = \mu_{\mathrm{D}p} \int_{\mathrm{WV}(\mathrm{D}p)} \mathrm{Tr} \left(\mathrm{P} \left[e^{i\lambda \iota_{Y} \iota_{Y}} \hat{C} \wedge e^{\hat{B}_{(2)}} \wedge e^{\lambda \mathcal{F}} \right] \right)$$

... where all the objects needed in the previous transparency are

$$\mathcal{F} = \mathrm{d}\mathcal{A} + i\mathcal{A} \wedge \mathcal{A}$$
 (YM non-Abelian field strength)

$$\hat{E}_{\mathcal{M}\mathcal{N}} = \hat{G}_{\mathcal{M}\mathcal{N}} + \hat{B}_{\mathcal{M}\mathcal{N}}$$

And each **hatted** quantity denotes the following expansion

$$\hat{\phi}(x^M, \lambda Y^i) \equiv \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} Y^{i_1} \cdots Y^{i_n} \partial_{i_1} \cdots \partial_{i_n} \phi(x^M, y^i) \bigg|_{y^i = 0}$$

Finally, when pullback P acts,

$$\partial_M Y^i \qquad P[\cdots] \qquad D_M Y^i \equiv \partial_M Y^i + i[A_M, Y^i]$$

$$D_M Y^i \equiv \partial_M Y^i + i[A_M, Y^i]$$

A complete example: mllA with O6/D6

O6: $\underset{\text{4D spacetime}}{\underbrace{\times \mid \times \times \times}} \underset{y^a}{\underbrace{\times \times \times}} \underbrace{---}_{y^i}$

[Dall'Agata, Villadoro, Zwirner 2009]

Type IIA Field	$\sigma_{ m O6}$	$(-1)^{F_L}\Omega$	physical dof's	Type IIA Flux	σ_{O6}	$(-)^{F_L}\Omega$
Φ	+	+	1	$\omega_{ab}{}^c$	+	+
B_{ai}	_	_	9	$\omega_{ij}{}^c$	+	+
C_i	_		3	$\omega_{ai}{}^{j}$	+	+
C_{abc}	+	+	1	H_{ijk}		_
C_{aij}	+	+	9	H_{abi}	_	_
C_{abijk}	_		3	$F_{(0)}$	+	+
g_{ab}	+	+	6	F_{ai}	_	_
g_{ij}	+	+	6	F_{abij}	+	+
Y^{Ii}	_	_	3 M	F_{abcijk}	_	_
$\mathcal{A}^{I}{}_{a}$	+	+	3 M	${\mathcal F}^I{}_{ab}$	+	+

Type IIA	Fluxes	$SO(6, 6+\mathfrak{N})$	$SO(2,2+\mathfrak{N}/3)$
F_{aibjck}	a_0	$-f_{+\bar{a}\bar{b}\bar{c}}$	$-\Lambda_{+333}$
F_{aibj}	a_1	$f_{+ar{a}ar{b}ar{k}}$	Λ_{+334}
F_{ai}	a_2	$-f_{+\bar{a}\bar{j}\bar{k}}$	$-\Lambda_{+344}$
$F_{(0)}$	a_3	$f_{+\bar{i}\bar{j}\bar{k}}$	Λ_{+444}
H_{ijk}	b_0	$-f_{-ar{a}ar{b}ar{c}}$	$-\Lambda_{-333}$
H_{abk}	c_0	$f_{+\bar{a}\bar{b}k}$	Λ_{+233}
ω_{ij}^{c}	b_1	$f_{-ar{a}ar{b}ar{k}}$	Λ_{-334}
$\omega_{ka}{}^{j} = \omega_{bk}{}^{i}$	c_1	$f_{+\bar{a}\bar{j}k} = f_{+\bar{i}\bar{b}k}$	Λ_{+234}
ω_{bc}^{a}	\bar{c}_1	$f_{+aar{b}ar{c}}$	A+133
${\cal F}^K_{ab}$	g_0	$f_{lphaar{a}ar{b}K}$	Λ_{+335}
g_{IJ}^{K}	g_1	$f_{\alpha IJK}$	Λ_{+555}

Jacobi id for $\left.\omega_{np}^{m}\right.$

BI for $\left. \mathcal{F}^{I}_{ab} \right.$

Jacobi id for g_{IJ}^{K}

BI for ${\cal C}_{(1)}$

The \mathbf{QC} 's imply...

$$c_1(c_1 - \tilde{c}_1) = 0$$
, $b_1(c_1 - \tilde{c}_1) = 0$, $a_3 c_0 + 2 a_2 c_1 - a_2 \tilde{c}_1 = 0$, $g_0 g_1 = 0$.

The reduction Ansatz & Matching

Unit volume!

$$ds_{(10)}^2 = \tau^{-2} g_{\mu\nu} dx^{\mu} dx^{\nu} + \rho \left(\sigma^2 M_{ab} e^a e^b + \sigma^{-2} M_{ij} e^i e^j \right)$$

$$e^{2\Phi} = \tau^{-2}\rho^3$$

(4d Einstein frame!)

$$de^m + \frac{1}{2}\omega_{np}^m e^n \wedge e^p = 0$$
twist

$$V_{\mathrm{Bulk}} = V_{\omega} + V_{H_3} + \sum_{p} V_{F_p}$$
 + Fixed by the WZ term!

$$V_{\rm DBI} = V_{\rm DBI}^{(0)} + \lambda^2 V_{\rm DBI}^{(2)}$$

(neglect higher orders!)

 $V_{
m Sugra}$

With appropriate choice of embedding tensor & scalar parametrization!

Fixed by tadpole cancellation!

Modified field strengths for O6/D6

We get from the WZ reduction the following form for the modified field strengths:

$$\widetilde{F}_{(0)} = a_3 - g_1 Y^3$$

$$\tilde{f}_2 = a_2 + (c_1 Y^2 + g_1 A Y^2) - a_3 \chi_2 + g_1 Y^3 \chi_2$$

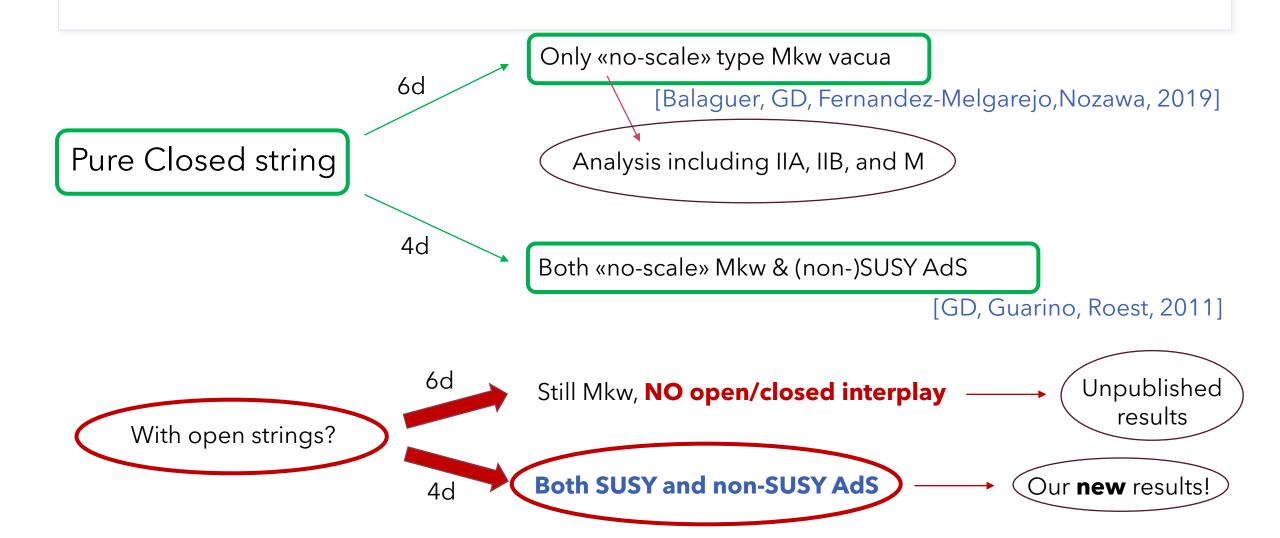
$$\Delta f_4 = \tilde{f}_4 - (f_4) = (-g_1 X - g_1 A^2 Y - \frac{c_0 Y^2}{2} - \frac{1}{2} AY (2c_1 + \bar{c}_1))$$

$$\Delta f_6 = \tilde{f}_6 - (f_6) = (\frac{3}{2}\bar{c}_1 A^2 + 3Ag_0 + A^3g_1 + \frac{3}{2}c_0 AY)$$

From modified BI!

From WZ!

What about vacua?



In the origin...

Solution	a_0	a_1	a_2	a_3	b_0	b_1	c_0	$c_1 = \bar{c}_1$	g_0	g_1	SUS
A	λ	0	0	$s_1 \frac{\sqrt{5} + 3\sqrt{13}}{14} \lambda$	0	$-\frac{11+\sqrt{65}}{14}\lambda$	0	$-\lambda$	$s_2 \frac{5\sqrt{10} + \sqrt{26}}{14} \lambda$	0	×
В	λ	0	0	$s_1 \frac{\sqrt{5} - 3\sqrt{13}}{14} \lambda$	0	$\frac{-11 + \sqrt{65}}{14}\lambda$	0	$-\lambda$	$s_2 \frac{5\sqrt{10} - \sqrt{26}}{14} \lambda$	0	×

SUSY Stability

Moving out of the origin with A ...

Solution	a_0	a_1	a_2	a_3	b_0	b_1	c_0	c_1 , \bar{c}_1	g_0	g_1	
1	$\left(s_2\frac{3}{2} - \frac{1}{2}\mathcal{A}^2\right)\lambda$	$s_1 \frac{1}{2} \sqrt{\frac{3}{5}} \lambda$	$-s_2\frac{\lambda}{6}$	$s_1 \frac{1}{2} \sqrt{\frac{5}{3}} \lambda$	$-s_1s_2\frac{\lambda}{\sqrt{15}}$	$\frac{\lambda}{3}$	$s_1 s_2 \frac{\lambda}{\sqrt{15}}$	λ	0	$-\frac{\lambda}{\mathcal{A}}$	1
2	$\left(s_2\frac{5}{3} - \frac{1}{2}\mathcal{A}^2\right)\lambda$	0	0	$s_1 \frac{\sqrt{5}}{3} \lambda$	0	$\frac{\lambda}{3}$	0	λ	0	$-rac{\lambda}{\mathcal{A}}$	×
3	$\left(s_2 - \frac{1}{2}\mathcal{A}^2\right)\lambda$	$-s_1 \frac{\lambda}{\sqrt{3}}$	$s_2 \frac{\lambda}{3}$	$s_1 \frac{\lambda}{\sqrt{3}}$	$s_1 s_2 \frac{\lambda}{\sqrt{3}}$	$\frac{\lambda}{3}$	$-s_1 s_2 \frac{\lambda}{\sqrt{3}}$	λ	0	$-rac{\lambda}{\mathcal{A}}$	×
4	$\left(s_2\sqrt{5} - \frac{1}{2}\mathcal{A}^2\right)\lambda$	0	0	$s_1\lambda$	0	λ	0	λ	0	$-\frac{\lambda}{\mathcal{A}}$	×

Our non-SUSY perturbatively stable AdS vacua...

$3, s_2 = +1$						
0	11 + 4 + 1					
2	2					
$\frac{1}{3}(19-\sqrt{145})$	10					
3	3					
$\frac{14}{3}$	3					
$\frac{20}{3}$	2					
9	5 + 5					
$\frac{1}{3}\big(19+\sqrt{145}\big)$	10					

$3, s_2 = -1$					
0	11 + 4				
1	5				
2	2				
$\frac{1}{3}\big(19-\sqrt{145}\big)$	10				
3	3				
4	1				
$\frac{14}{3}$	3				
$\frac{20}{3}$	2				
9	5				
$\frac{1}{3}\big(19+\sqrt{145}\big)$	10				

$$\begin{array}{c|cccc}
4, s_2 &= +1 \\
\hline
\frac{4}{3}(2 - \sqrt{5}) & 5 \\
0 & 16 + 4 \\
\frac{2}{3} & 3 \\
\frac{4}{3} & 6 \\
2 & 4 + 5 \\
\hline
\frac{2}{3}(1 + \sqrt{5}) & 1 \\
\frac{8}{3} & 5 \\
6 & 6 \\
\frac{20}{3} & 1
\end{array}$$

Consider the following scaling limit...

$$\rho \sim \Omega^2 , \ \tau \sim \Omega^6 , \ \sigma \sim \Omega^0$$

Fluxes	$H_{(3)}$	$F_{(p)}$	ω	\mathcal{F}^I
Ω weights	Ω^2	Ω^{2+p}	Ω^0	Ω^4

In this limit flux numbers are HIGH and insensitive to flux quantization!

Scales	g_s	$\frac{Vol_6}{(2\pi\ell_s)^6}$	$\frac{ \Lambda }{M_{ m Pl}^4}$	$rac{\ell_{ ext{KK}}}{\ell_{ ext{AdS}}}$			
Ω weights	Ω^{-3}	Ω^6	Ω^{-14}	Ω^0			
String loops Higher derivatives							

NO scale separation!

EFT validity

$$\mathcal{R}_{10}^{(4)} \, \sim \, \Omega^{-20}$$

Conclusions & Outlook

- Studying the dynamics of open strings in flux compactifications is an important challenge for String Theory
- With many supercharges I can use lower d supergravities as a guideline for constructing this coupling
- This analysis is very crucial in the context of the Swampland and the SLP
- We derived generalized S-/T- dual versions of the GS modifications
- In our 4d setup we found interesting novel things, like new SUSY & non-SUSY AdS vacua...

Thank you for your attention!

