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~ Euclidean Wormholesiand String Phenomenology




Analytic bounds on late-time cosmology
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Why Euclidean Wormholes?

* Recent prominent roles in string theory, especially from the quantum information perspective:

* Page-curve for black holes

* AdS wormholes jeopardize factorization in AdS/CFT (ensemble average?)

* These findings involving Euclidean wormholes were obtained in 2D gravity in which explicit
calculations are under control. Do they play similar roles in D > 4 with dynamical gravity?

* Do they arise as Euclidean saddles of UV complete theories such as string theory?

* Are they genuine saddle points? Perturbatively stable?

» Can we construct Euclidean wormholes from compactifications of string theory?
Explicit AAS wormhole solutions made precision holography possible.


https://arxiv.org/abs/2203.01956
https://arxiv.org/abs/2302.03688
https://arxiv.org/abs/2302.03688

Why Euclidean Wormholes at String Pheno?

Wormholes break global symmetries.

Play a key role in the axionic Weak Gravity Conjecture

evidence that WGC bound is set by wormholes:
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which was used to constrain some large field inflation models.
Coleman’s a-parameters lead a -1-form global symmetries

Gauss-Bonnet term which was argued to be positive using Swampland criteria:
leads to an additional exponential suppression of
wormhole effects & provides an alternative definition of species scale

Other phenomenological implications of wormholes reviewed in



Giddings-Strominger Wormhole



Giddings-Strominger Solutions

Consider the following Euclidean action in d = 3 dimensions:
1 1 . .
S=_— (*(72 —2A) — iGZj(gp)dgpz A *dgpj)

2/1(1

A simple set of solutions with O(d) symmetry take the form

a’ 2_1 | a’ | C
(7) 2 2(d—1)(d - 2)a2d—4

dgpi dgpj
< =Gyl an

= constant

h(r) is a harmonic function, normalized to 4’ = f/a?~! so that % h = vol ,_;; plays the
role of affine parameter along the geodesic.



Three Classes of Euclidean Geometries
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c >0 c =20 c <0
space-like geodesic null geodesic time-like geodesic
Core instanton Extremal instanton, e.g. D-instanton Wormhole

P

Gii(p) dpidp’ = —dy? only time-like geodesics



Three Classes of Euclidean Geometries
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c >0 c =20 c <0
space-like geodesic null geodesic time-like geodesic
Core instanton Extremal instanton, e.g. D-instanton Wormhole

Gij(p)dp'dyp?’ = do* — e’? dy? C ; 0 all possible, but longest

time-like geodesic has length I%TI



Wormhole Regularity

Required geodesic length for wormholes only depends on the wormhole size in AdS units:

Dy (%O) = “length of geodesic required by geometry”

D ,(q,) is monotonic in gy = ay/¢:

d— 92 distance conjecture?

d 1 | |
2 =D > D > D — 0
7T\/Q(d — 2) d(o) - d(QO) - d(OO) 27T\/2(d — 1) metric withl?nczlefinite sign

There must exist a time-like geodesic longer than D, (g,)




Extremal Instantons and Wormholes

The Euclidean action of core instanton, extremal instanton and wormhole depends on ﬁi.

For a given axion charge:
Extremal instanton has the minimal action if there are no regular wormholes;
Regular wormhole has the minimal action if the dilaton coupling allows it to exist.

Euclidean axion wormholes are over-extremal. Unlike over-extremal black holes, there is
no naked singularity to warn us about possible sickness.

This has led some to speculate that Euclidean axion wormholes are in the swampland:
Negative modes that lower the Euclidean action

Violate Tr(F £ %F)? > 0 in the dual CFT

Our works settled these puzzles.



Wormhole Stability



Wormhole Stability

Previous works (25+ years) on perturbative stability of axion wormholes have led to
contradictory claims, casting doubts on their contributions to the Euclidean path integral.

Frame Stable Gauge-inv j=0,1 B.C.

Rubakov, Shvedov, ‘96 axion No No physical X
Alonso, Urbano, ‘17 axion Yes Yes physical
. L . pure
Hertog, Truijen, Van Riet, ‘18 axion No Yes X
gauge
Loges, GS, Sudhir, ‘22 3-form  Yes Yes pure ‘/
gauge
Hertog, Meanaut, Missoni, Tielemans, Van Riet, ‘24 | axion Yes Yes pure ‘/
gauge
. o o N
My talk at String Pheno 2022 in Liverpool touched upon this issue. A <, \llf
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Gary Shiu - Amplitudes meet the
Swampland

101 views * 1 year ago


https://youtu.be/3gRpiBS0-NE?si=3kwNC1pwB_zkjoxG

Gauge Invariance and Boundary Conditions

Under diffeomorphism, metric and 3-form perturbations are mixed:

ds® = a(n)? {—(1 +2¢) dn® + 20, Bdnda’ + ((1 — 2¢)v; + 2V,;0;F) dfidflf'j}

H = 2% {(1 + s)vols +dn A (5 Ve i 0'w da? A dxk)}
7

Metric perturbations vanish far from the wormhole neck so are the 3-form perturbations:

n= J HeZ = 0H — 0 asymptotically
S3

Gauge invariant perturbations satisfy Dirichlet boundary conditions in the 3-form picture.

Conformal mode problem is absent: j = 0 mode is not physical (wormhole size is set by
axion charge).

The conformal model problem is conceivably only be a feature of pure gravity. Could it be
evaded for the wavefunction of the universe in the context of inflation?



String Theory Embeddings

[Loges, GS, Van Riet, 23]



Euclidean Axion Wormholes in Flat Space

* Reduction ansatz motivated by the extremal solution:

2 —6b 2 2b 2 ' '
ds2, = e 5" ds? + e®? R2 M, dO'd o D % X %
./\/lz‘j :di&g(eﬁl.qg,GﬁZ.qg,...,656'5) D22 X X X

D2 X X X
. 123 145 250 346 3
Cs5 = x1d0"° + x2d0'™ + x3d0%° + x4 d6 D2, XX X

No Wick rotation that turns them into

* 4d theory contains 11 scalars: . .,
Lorentzian “overextremal” branes.

1 1 '
S4 — 5 9 —R + — Z 88 QSZ 8)(2) ] -+ 5 2(882)2
i=5 -

2K

There are four decoupled axio-dilaton pairs with 8 = 2:

4

1 3
E — =1 > - v
— B 4



Euclidean Axion Wormholes in AdS Space

%ﬁ / (Bs, Cy) axions
SQ

2 < SS
T e

Background solution: Reduction ansatz:

' =[SU(2) x SU2)]/U(1)  ~

dsiy = € ds; + *(dsgg +1n°) dss, = (2e~ 3 (dutv) dsg + 0% (e” dsgg + €°'n°)

i
e’ = g e® = gse”
B, = 0 B,y = (%¢1/%p @,
Co=0 C():zgs p%
Cy =0 Cy = il?g; 1/ %c Dy

F5 — 462(1 — i*)VOlTl,l F5 — 462(1 — i*)VOlTl,l



Consistent Reduction to 5D

HgNdb/\(I)Q F3N dC—de)/\(I)Q
Strmg dllaton ¢ (dF3 = Hz A )
1 \v

S5 = 9.2 d5a: \g\ 1 e Au—?¢ (Ob)* 1 2(’5 Ox)* + 16_4“’+¢(8c x Ob)?
5

| 238 (8u) 88U8U 4 4 (82}) i 26—%(4’UJ—|—U) (264u—|—4v o 1266u—|—2v 1+ 4) i|

\%—J .
e*" dsip + e*V n? \_/

[Cassani, Dall’Agata, Faedo — ‘10|
[Cassani, Faedo — ‘11

Not Giddings-Strominger wormhole!



Consistent Reduction to 5D

F3 ~ (dc — xdb) A &,

Hs ~ dbA oy
G

% / @z /|g| [ —R +3(00)° + %(é’b)2 + (é‘x)2 + %(80 — x Ob)?

S5 =

- 2(0u)? + S0udv + 2(9v)? 4 2¢7 5 Autv) (getutdy _ q96utu 4 y) }

— L .
e*" dsip + e*V n? \/

[Cassani, Dall’Agata, Faedo — ‘10|
[Cassani, Faedo — ‘11

Not Giddings-Strominger wormhole!



Symmetries

The gauge symmetries associated with C,, C,, B, lead to three shift symmetries:

(51)(:)\1, 52)(:0, 53)(:0,
61b=0, dob = \o . 03b =0,
5162)\1[?, 52620, 5362)\3,

The 0, transformation is an element of SL(2,[R) under which:

-
—¢ —¢
e e 7, X — X+ A1, _C_H_)\l 1 e|

There is also the rescaling symmetry of SL(2,R) for which:

_ - 1 o -
—o s 2 —¢ R 9 b s a O b
€ a € ] X a x, _C_ _ 0 CL_ _C_ .

Exploit these symmetries, which in the SUGRA approximation, are unbroken to discrete subgroups.



Axion Charges

The axion EOMs can be solved in terms of the constant axion charges (assoc. with 0,, 03):

*[e_4u_¢ db + e_4u+¢x(dc — X db): = (1 Volg ,
*[6_4“ *(de — de): = (2 voly .

q, and q, are both conserved and quantized; qis gauge-dependent (Page charge), q, is
gauge-invariant (Maxwell charge).

q1, quantized in units of (/¢ Yo and £ > ¢ .. justifying continuous charge approximation.

Under the shift symmetries: 0191 = A 1q2, 02q1 = 0, 03q1 =0,
0192 = 0, 02q2 = 0, 0392 = 0,

and the rescaling symmetry: q1 — aqq, qo > a_1q2 .



Equations of Motion

In terms of the constant axion charges, the remaining 5d EOMSs:

1 _
¢ = —62¢(8X)2 - §€4u [€¢(CI1 — QQX)Q T € qbcl%} (WL)Q :

dx(e*?dy) = —e**%q2(q1 — q2x)(Oh)?,
3 3
(Tu +v) = gauv — 16% [6¢(Q1 — CIQX)2 — e‘¢q§] ((r?’h)2 ,
3
(u+v) = =0,V,

8
2R, = 0,,00,¢ — e%(?ux@yx + et [e¢(q1 — gax)? — e_¢q3] 0,hOyh

2
5368Muc?yu i(cﬁu@v 0,v0,u) i@uvﬁyv—gng.

Solutions have definite parity when q; = 0O; generate solutions with q; # 0O by shift 0,.

The B,, C, axions source the saxions u, v: cannot simply setu = v = 0.



Supersymmetric Instanton

Setting u = v = 0 at the potential minimum requires:

g1 — qox = £qa e ?

Picking the bottom sign:

X — e~ ? = 2 — const. — F3 = —ie_(DHg.

This is the supersymmetric D-instanton.

Another option is to consider b, ¢ = constant (hence q; = q, = 0), leaving only the type
IB axio-dilaton which has f# = 2 which does not allow for regular wormholes.

Non-singular wormhole solutions require non-zero u, v.



Boundary Conditions

Metric Ansatz: ds52 = f(r)’dr* + (qg + rz)dgzﬁ where gy=wormhole size (in AdS units).
AdS solutionsasr — o00,i.e., [ — 1/q ~ 1/rasr — o

The boundary conditions for the saxions u, v as r — o0 can be found by first identifying
the mass eigenstates: expanding around the potential minimum and diagonalizing:

U—v: ms =12, A1 =06,

du+ v m5 = 32, Ay =38,
they are both subject to the axion source term which goes as q%/ rSasr — o0.
uw—v~ 1/r% and 4u +v ~ logr/r®

Massless scalars ¢, v, b, c fall off as 1/r*



Constructing Wormhole Solutions

For fixed wormhole size g, and (e?y,)’, use shooting -

o

method to construct solutions which connect the
neck region to the asymptotic AdS region. o

s —0.05

Adjust u,, v, to match BCs.

—0.10 A

0.2 1

Two-parameter family of wormhole solutions.

2 0.1 1

For fixed gy = ay/¢, can arrange for all r :

1.5 1

Weak coupling: e?® = gse¢ .

0.0

Small curvatures: R|[gs|, L[gig]l ~ =2

—0.2 A

NS

© o ooo
[N} W = U1
1

0.

10

10~

= 10~

—(4u

10~

10—1 -

1073 +

10~

X oo

10~

Q’/m\

1 4

K (259)/7}
5 ]
-== (12.07)log(r/1.88)/r®

10! -

--- (398)/%

101

--- (1.63)/r* +h
T N



Dual CFT and Operators Positivity

Type IIB on T%1! is dual to an N = 1 quiver CFT with two nodes [Klebanov, Witten — 98]

1 1
N e Co <«— 01 +05
91 9o
1 1 .
/BQ YR 5 5 /(12 «—— 01— 065
52 91 92 52 _
(dCy = dCy — Cy d Bs)
Dual operators:
O@:TI'(Fl /\*Fl—I—FQ /\*FQ) OCO :Tr(Fl/\F1+F2/\F2)
OBQ :Tr(F1 /\*Fl—FQ /\*FQ) OC'Q :TI'(Fl/\Fl—FQ/\FQ)

Operator positivity:

<Tr[(F7; T *Fi)2]> >0 — <Oq>> T <OB2> > <OC’O> T <OC’2>



Violation of Positivity Bounds

[Loges, GS, Van Riet, 23]

With the fully explicit 10d gravity solution, we can check whether (Og) + (Op,) > (Oc,) £+ (Og,)

This is always violated (for all g, and y,)!

—0.4
4 (64 + xa) — (1 - xoo)
—0.2

—0.1

—0.04
—0.02

—0.01

—0.004
—0.002

q0



One boundary vs two?

-

In gluing to a single asymptotic boundary,
the numerical solutions easily satisty the bounds

(monopole/dipole source for NSNS/RR fields):

o A
<OCO>: L Y2




Positivity bounds?

For classical field configurations, Tr(F = % F)? > 0 is a complete square of Hermitian
operators and should be positive.

In QFT, we subtract an infinite constant when we normal order. The normal ordered
operator is not a complete square.

Evaluating on the quantum state, < Tr(F' £ % F )2 > can be negative (similar argument
for stress tensor in ).

Wormhole solutions connecting two asymptotic regions may correspond to such a quantum
state in the dual CFT.

Constructing such quantum state in the dual CFT is an interesting question for the future.



Summary



Summary

- Establish that GS wormhole is perturbatively stable. The 3-form picture makes gauge invariance and proper
boundary boundary conditions transparent.

+ Conclusion of stability may carry over to AdS space and with additional dilatons: (physical) perturbations
are localized to the wormhole throat.

- Construct explicit Euclidean axion wormholes in flat and AdS space from string theory:

. Flat space wormholes from type IIA on T°: cannot Wick rotate to only Lorentzian branes.

. AdS space wormholes from type |IB on Th!
o Not Giddings-Strominger type: saxions have a potential and are sourced by the axions.
o Known CFT dual: violation of positivity bounds in the CFT state for two-boundary solutions.

© Massive scalars u, v dual to irrelevant operators may play a crucial role in identifying such CFT state.

« Other conceptual issues remain, e.g., a-parameters? Baby universes? For small wormholes (in AdS units)
where one might integrate out wormhole effects a la Coleman, the solutions break down.





