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Analytic bounds on late-time cosmology

Hung V. TranFlavio Tonioni

• ``Accelerating universe at the end of time,’’ GS, Tonioni, Tran, PRD [arXiv:2303.03418].

• ``Late-time attractors and cosmic acceleration,” GS, Tonioni, Tran, PRD [arXiv:2306.07327].

• ``Collapsing universe before time,” GS, Tonioni, Tran, JCAP [arXiv: 2312.06772].

• ``Analytic bounds on late-time axion-scalar cosmologies,” GS, Tonioni, Tran, [arXiv:2406.17030].

[See Flavio Tonioni’s parallel talk on Thursday, 17:00, Session B4]

https://arxiv.org/abs/2303.03418
https://arxiv.org/abs/2306.07327
https://arxiv.org/abs/2312.06772
https://arxiv.org/abs/2406.17030


Why Euclidean Wormholes?

• Recent prominent roles in string theory, especially from the quantum information perspective:

• Page-curve for black holes [Penington];[Almheiri, Engelhardt, Marolf, Maxfield];[Almheiri, Mahajan, Maldacena, Zhao]; [Almheiri, Hartman, 
Maldacena, Shaghoulian, Tajdini]; …

• AdS wormholes jeopardize factorization in AdS/CFT [Maldacena, Maoz, ‘04] (ensemble average?)

• These findings involving Euclidean wormholes were obtained in 2D gravity in which explicit 
calculations are under control.  Do they play similar roles in  with dynamical gravity?

• Do they arise as Euclidean saddles of UV complete theories such as string theory?

• Are they genuine saddle points? Perturbatively stable? [Loges, GS, Sudhir, ’22]

• Can we construct Euclidean wormholes from compactifications of string theory? [Loges, 
GS, Van Riet, ’23]. Explicit AdS wormhole solutions made precision holography possible.

D ≥ 4

https://arxiv.org/abs/2203.01956
https://arxiv.org/abs/2302.03688
https://arxiv.org/abs/2302.03688


Why Euclidean Wormholes at String Pheno?

• Wormholes break global symmetries.

• Play a key role in the axionic Weak Gravity Conjecture [Arkani-Hamed, Motl, Nicolis, Vafa, ‘05];[Rudelius, ’14, ’15]; [Brown, 
Cottrell, GS, Soler, ‘15];[Montero, Valenzuela, Uranga, ’15]; [Heidenreich, Reece, Rudelius, ’15]; [Hebecker,Mangat-Theissen-Witkowski, ’16]; …

which was used to constrain some large field inflation models.

• Coleman’s -parameters [Coleman, ’89] lead a -1-form global symmetries [McNamara, Vafa, ’20] 

• Gauss-Bonnet term which was argued to be positive using Swampland criteria: [Aalsma, GS, ’22]  

(WGC); [Martucci, Risso, Weigand, ’22] (EFT string probes) leads to an additional exponential suppression of 
wormhole effects & provides an alternative definition of species scale [Martucci, Risso, Valenti, Vecchi, ’24]

• Other phenomenological implications of wormholes reviewed in [Hebecker, Mikhail, Soler, ’18]

α

f ⋅ Sinstanton ≲ MPFigure 4: Wormholes: A semiwormhole (left), a wormhole connecting two distinct large
asymptotically flat universes (center) and a wormhole on a single universe (right).

The wormhole action is particularly easy to compute using the trace of the Einstein
equation:
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Notice the factor 2 appearing because a wormhole consists of two solutions of the form
of (11), each restricted to r > r0.

The most straightforward interpretation of this is as follows: Suppressed by an overall
factor exp(�Sw), the partition function includes processes in which an S3 baby universe
supported by H3-flux ‘bubbles o↵’ at some space-time point x and is absorbed later on
at y (x, y 2 R4). From the low-energy perspective, this is equivalent to an instanton
(of charge n and action Sw/2 ⇠ |n|/f) at x and a corresponding anti-instanton at y.
Calculational control in semiclassical gravity requires r0 ⇠

p
|n|/f � 1. This should

then give rise to a cosine potential for ✓ and further instanton-induced operators. It has,
however, been argued that, in contrast to the instantonic situation, no such potential is
induced because of the unavoidable pairing of instanons and anti-instantons [93]. Coun-
terarguments have been given [95], based essentially on the intuition that local physics
is ignorant of the overall constraint on instantons vs. anti-instantons in a very large
space-time. (Recall that the action stays finite as |x� y| ! 1.) However, this debate is
overshadowed by a much deeper issue which will permeate the rest of this review: Once
one allows for wormholes, one has e↵ectively allowed for baby-universes propagating be-
tween points x and y. But then such baby universes must also be allowed to be part of
the initial and final states of any process. More generally, there exits a ‘baby-universe
state’ in addition to our space-time and any wormhole e↵ects (such as the naive cosine
potential) depend on it.

2.3 Dilatonic wormholes

Before coming to the physical e↵ects of wormholes and baby universes, we want to
briefly comment on generalizations of the Giddings-Strominger solution which involve a
dilaton [1, 36, 63, 93, 95]. This is important since such dilatons are always present in the
simplest stringy models allowing for wormholes.

Consider an action in which the axionic kinetic term depends on a further massless
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[Giddings, Strominger, ’88]; [Abbott, Wise, ’89];[Coleman, Lee, ’90]; [Kallosh, Linde, Linde, Susskind, ’95]; …

evidence that WGC bound is set by wormholes:

 [Andriolo, Huang, Noumi, Ooguri, GS, ’20]; 


[Andriolo, GS, Soler, Van Riet, ’22]



Giddings-Strominger Wormhole



Giddings-Strominger Solutions

• Consider the following Euclidean action in d ≥ 3 dimensions:

• A simple set of solutions with O(d) symmetry take the form [Giddings, Strominger, ’88]: 

•  is a harmonic function, normalized to  so that ; plays the 
role of affine parameter along the geodesic.
h(r) h′ = f/ad−1 ⋆ h = vold−1

enough wormholes.

The remainder of this paper is organized as follows. In section 2 we review GS wormholes
in AdS and their regularity conditions. In section 3 we make explicit the uplift of flat space
wormholes in type IIA supergravity on a 6-torus. In section 4 we turn to the uplifts of AdS
wormholes in type IIB supergravity where we construct solutions numerically and discuss
implications for AdS/CFT. Finally, we conclude in section 5. A more detailed discussion of
the numerical methods used has been relegated to appendix B, where we discuss the uplift of
AdS wormholes in massive type IIA on S

3 ⇥ S
3. The accompanying source code is publicly

available at github.com/gloges/typeII-wormholes [32].

2 Regular Giddings-Strominger wormholes

In this section we recall the generalised Giddings-Strominger wormholes and their associated
regularity condition pioneered in [29]. Consider the following Euclidean action in d � 3
dimensions:
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where h(r) is a harmonic function, normalized to h
0 = f/a

d�1 so that ?dh = vold�1, and
⇤ = �(d � 1)(d � 2)`�2. The scalars trace out a geodesic curve on the target space: the
constant c is the geodesic velocity and the harmonic function h plays the role of the a�ne
parameter along the geodesic.

Wormhole geometries have c < 0 and correspond to time-like geodesics on the target
space. In Euclidean spacetime signature the metric on the target space has indefinite signature
with the time-like directions being axion directions. The above wormhole metrics are always
regular, but the expressions for the geodesic curves (i.e. the axion and dilaton profiles) need
not be. For example, a consistent truncation of Euclidean type IIB supergravity compactified
over S5 gives an action of the above form with the following kinetic term for the axio-dilaton:
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The corresponding wormholes have singular axion and dilaton profiles [33]. The reason for
this was understood in [29] in a general fashion and requires the notion of the geodesic length
D for the time-like geodesics, which can be computed using
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Three Classes of Euclidean GeometriesGS geometries

⇥

c > 0 c = 0 c < 0

space-like geodesic null geodesic time-like geodesic

G. J. Loges 10D Axion Wormholes 5 / 34

Core instanton Extremal instanton, e.g. D-instanton Wormhole

GS geometries

⇥

c > 0 c = 0 c < 0

space-like geodesic null geodesic time-like geodesic

Gij(') d'
id'j = �d�2 only time-like geodesics

G. J. Loges 10D Axion Wormholes 5 / 34



Three Classes of Euclidean GeometriesGS geometries

⇥

c > 0 c = 0 c < 0

space-like geodesic null geodesic time-like geodesic

G. J. Loges 10D Axion Wormholes 5 / 34

Core instanton Extremal instanton, e.g. D-instanton Wormhole

GS geometries

⇥

c > 0 c = 0 c < 0

space-like geodesic null geodesic time-like geodesic

Gij(') d'
id'j = d�2

� e
�� d�2 c R 0 all possible, but longest

time-like geodesic has length 2⇡
|�|

G. J. Loges 10D Axion Wormholes 5 / 34



Wormhole Regularity

• Required geodesic length for wormholes only depends on the wormhole size in AdS units:

•  is monotonic in :

• There must exist a time-like geodesic longer than  [Arkani-Hamed, Orgera, Polchinski, ‘07]

Dd (q0) q0 ≡ a0/ℓ

Dd (q0)

GS wormhole regularity

Required geodesic length for wormholes only depends on the wormhole size in AdS units:
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The geodesic speed c has been traded in favor of the wormhole size a0, which is the radius
of the cross-sectional Sd�1 at the wormhole neck and is the largest real root of the equation
a
0 = 0 in (2.2). This geodesic length is largest in the flat space limit, ` ! 1, and becomes

smaller when the wormhole size is large in AdS units, a0 � `:

⇡

r
2(d� 1)

d� 2
= Dd(0) � Dd

�
a0
`

�
� Dd(1) = ⇡

r
2(d� 2)

d� 1
. (2.5)

It is now easy to state the simple criterion which characterizes exactly when regular GS worm-
holes exist: there must exist a time-like geodesic for the target space ds2 = Gij(') d'id'j

which is longer than Dd(
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` ). For an axio-dilaton pair with coupling �,
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With several decoupled axio-dilaton pairs the geodesic length can be made larger by traversing
a “diagonal” direction and the regularity condition is weakened to
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In section 4 we will encounter AdS compactifications for which there is a scalar potential, in
which case the solutions are no longer described by geodesics in the target space. Neverthe-
less, these GS solutions and their simple regularity criterion can provide some intuition for
determining whether wormhole solutions exist in a more general setting.

3 Lifting flat space wormholes

3.1 The reduction

Consider IIA supergravity compactified on a 6-torus. We will only require the following
subsector of the 10d IIA action (in 10d Einstein frame) involving metric, dilaton and RR
4-form flux:
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This action can describe D2-branes, for instance. Indeed, the wormholes we will construct
will turn out to be regular “over-extremal” deformations of the following SUSY intersection
of Euclidean D2-branes wrapping 3-cycles on the 6-torus:
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(3.2)

Below, we present an ansatz for a consistent truncation of the 6-torus reduction that is inspired
by this intersection in the sense that it can at least capture the SUSY intersection. In 4d

5

distance conjecture?

but


metric with indefinite sign



Extremal Instantons and Wormholes

• The Euclidean action of core instanton, extremal instanton and wormhole depends on .

• For a given axion charge:

• Extremal instanton has the minimal action if there are no regular wormholes;

• Regular wormhole has the minimal action if the dilaton coupling allows it to exist.

• Euclidean axion wormholes are over-extremal. Unlike over-extremal black holes, there is 
no naked singularity to warn us about possible sickness.

• This has led some to speculate that Euclidean axion wormholes are in the swampland:

• Negative modes that lower the Euclidean action [Hertog, Truijen, Van Riet, ‘19]

• Violate  in the dual CFT [Bergshoeff, Collinucci, Ploegh, Vandoren, Van Riet, ‘05]

• Our works [Loges, GS, Sudhir, ’22]; [Loges, GS, Van Riet, ’23] settled these puzzles.

βi

Tr(F ± ⋆F)2 ≥ 0



Wormhole Stability



• Previous works (25+ years) on perturbative stability of axion wormholes have led to 
contradictory claims, casting doubts on their contributions to the Euclidean path integral.

• My talk at String Pheno 2022 in Liverpool touched upon this issue.

[Loges, GS, Sudhir, ’22]

Frame Stable Gauge-inv j=0,1 B.C.

Rubakov, Shvedov, ‘96 axion No No physical

Alonso, Urbano, ‘17 axion Yes Yes physical

Hertog, Truijen, Van Riet, ‘18 axion No Yes pure 
gauge

Loges, GS, Sudhir, ‘22 3-form Yes Yes pure 
gauge

Hertog, Meanaut, Missoni, Tielemans, Van Riet, ‘24 axion Yes Yes pure 
gauge

✓
✓

×
×
×

Wormhole Stability

https://youtu.be/3gRpiBS0-NE?si=3kwNC1pwB_zkjoxG


Gauge Invariance and Boundary Conditions

• Under diffeomorphism, metric and 3-form perturbations are mixed:

• Metric perturbations vanish far from the wormhole neck so are the 3-form perturbations:

• Gauge invariant perturbations satisfy Dirichlet boundary conditions in the 3-form picture.

• Conformal mode problem is absent:  mode is not physical (wormhole size is set by 
axion charge).

• The conformal model problem is conceivably only be a feature of pure gravity. Could it be 
evaded for the wavefunction of the universe in the context of inflation? [Loges, GS, work in progress]. 

j = 0
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I Six scalar perturbations: �, , E,B, s, w

I Dirichlet boundary conditions: perturbations must go to zero

G. J. Loges Wormholes and Saddles in Axion Gravity 28 / 37

n = ∫S3

H ∈ ℤ ⇒ δH → 0 asymptotically



String Theory Embeddings
[Loges, GS, Van Riet, ’23]



Euclidean Axion Wormholes in Flat Space
[Loges, GS, Van Riet, ’23]

Reduction ansatz
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Our reduction has 11 scalars:

String dilaton: � Radion: ' Torus moduli: �1, . . . ,�5 Axions: �1, . . . ,�4
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• Reduction ansatz motivated by the extremal solution:

• 4d theory contains 11 scalars: No Wick rotation that turns them into 
Lorentzian “overextremal” branes.



Euclidean Axion Wormholes in AdS Space
[Loges, GS, Van Riet, ’23]T 1,1

ansatz
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[Klebanov, Witten]



Consistent Reduction to 5D
[Loges, GS, Van Riet, ’23]

Consistent reduction to 5D
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[Cassani, Faedo – ‘11]
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Not Giddings-Strominger wormhole!
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Symmetries
[Loges, GS, Van Riet, ’23]

• The gauge symmetries associated with  lead to three shift symmetries: 

• The  transformation is an element of  under which:

• There is also the rescaling symmetry of  for which:

• Exploit these symmetries, which in the SUGRA approximation, are unbroken to discrete subgroups.
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The minimum of the potential, V = �12, occurs at u = v = 0. The associated equations of
motion have solutions in 5d AdS units with gs scaled out and so one should appeal to the 10d
uplift formula for a full understanding.

4.2.2 Symmetries and axion charges

There are three shift symmetries,

�1� = �1 , �2� = 0 , �3� = 0 ,

�1b = 0 , �2b = �2 , �3b = 0 ,
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(with �i constant) which descend from the gauge symmetries corresponding to C0, C2 and
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Since we work in the supergravity approximation where these continuous symmetries are not
broken to discrete subgroups, we can use the above perturbative symmetries to simplify the
numerical analysis.

The axion equations of motion can be solved in terms of constant axion charges as
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These charges correspond to the Noether charges under the two commuting shift symmetries
�2 and �3. From a 10d viewpoint we have
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Axion Charges
[Loges, GS, Van Riet, ’23]

• The axion EOMs can be solved in terms of the constant axion charges (assoc. with ):

•  and  are both conserved and quantized; is gauge-dependent (Page charge),  is 
gauge-invariant (Maxwell charge). 

•  quantized in units of  and : justifying continuous charge approximation.

• Under the shift symmetries:

and the rescaling symmetry:

δ2, δ3

𝔮1 𝔮2 𝔮1 𝔮2

𝔮1,2 (ℓs/ℓ)6 ℓ ≫ ℓs
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Since we work in the supergravity approximation where these continuous symmetries are not
broken to discrete subgroups, we can use the above perturbative symmetries to simplify the
numerical analysis.

The axion equations of motion can be solved in terms of constant axion charges as
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These charges are conserved by the equations of motion, but q1 is clearly gauge-dependent
since C0 appears explicitly: q1 is a “Page charge” in the language of [42]. There is no
such ambiguity for q2, which is both gauge-independent and quantized. However, since q2 is
integer-quantized in units of (`s/`)6 and ` � `s, we are justified in taking a continuous-charge
approximation and will not be bothered with quantisation conditions.

For completeness, under the shift symmetries,

�1q1 = �1q2 , �2q1 = 0 , �3q1 = 0 ,

�1q2 = 0 , �2q2 = 0 , �3q2 = 0 ,
(4.15)

and under the “rescaling symmetry,”

q1 7! a q1 , q2 7! a
�1q2 . (4.16)

In terms of the q1 and q2 charges, the (remaining) 5d equations of motion take the form
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(4.17)

Here h(r) is harmonic and normalized to h
0 = f/q

4 so that ?dh = vol4. Solutions have definite
parity when q1 = 0, which we take for simplicity when constructing numerical solutions. This
choice can be undone using the �1 transformation above as long as q2 is non-zero (which will
be the case for the non-singular solutions of interest).

4.2.3 Review of supersymmetric solutions

Here we review the supersymmetric instanton solutions which appear in the Klebanov-Witten
model [43]. These solutions serve as an anchor point to test our understanding of the trun-
cation, axion charges and especially whether or not our wormholes violate positivity bounds,
since these bounds are saturated for SUSY instantons.

We can see from the 5d equations of motion (4.17) that the matter stress tensor vanishes
exactly when

q1 � q2� = ±q2 e
�� (4.18)

with u = v = 0 sitting at the minimum of V. This statement is invariant under all of
the symmetries (all three shift symmetries and the rescaling). In particular, recall that q1
transforms under constant shifts of �. Picking the bottom sign (c.f. [43]),

�� e
�� =

q1
q2

= const. =) F3 = �ie
��

H3 . (4.19)
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Here h(r) is harmonic and normalized to h
0 = f/q

4 so that ?dh = vol4. Solutions have definite
parity when q1 = 0, which we take for simplicity when constructing numerical solutions. This
choice can be undone using the �1 transformation above as long as q2 is non-zero (which will
be the case for the non-singular solutions of interest).
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Here we review the supersymmetric instanton solutions which appear in the Klebanov-Witten
model [43]. These solutions serve as an anchor point to test our understanding of the trun-
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Equations of Motion
[Loges, GS, Van Riet, ’23]

• In terms of the constant axion charges, the remaining 5d EOMs:

• Solutions have definite parity when ; generate solutions with  by shift .

• The  axions source the saxions : cannot simply set . 

𝔮1 = 0 𝔮1 ≠ 0 δ1

B2, C2 u, v u = v = 0

These charges are conserved by the equations of motion, but q1 is clearly gauge-dependent
since C0 appears explicitly: q1 is a “Page charge” in the language of [42]. There is no
such ambiguity for q2, which is both gauge-independent and quantized. However, since q2 is
integer-quantized in units of (`s/`)6 and ` � `s, we are justified in taking a continuous-charge
approximation and will not be bothered with quantisation conditions.

For completeness, under the shift symmetries,
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Here h(r) is harmonic and normalized to h
0 = f/q

4 so that ?dh = vol4. Solutions have definite
parity when q1 = 0, which we take for simplicity when constructing numerical solutions. This
choice can be undone using the �1 transformation above as long as q2 is non-zero (which will
be the case for the non-singular solutions of interest).

4.2.3 Review of supersymmetric solutions

Here we review the supersymmetric instanton solutions which appear in the Klebanov-Witten
model [43]. These solutions serve as an anchor point to test our understanding of the trun-
cation, axion charges and especially whether or not our wormholes violate positivity bounds,
since these bounds are saturated for SUSY instantons.

We can see from the 5d equations of motion (4.17) that the matter stress tensor vanishes
exactly when

q1 � q2� = ±q2 e
�� (4.18)

with u = v = 0 sitting at the minimum of V. This statement is invariant under all of
the symmetries (all three shift symmetries and the rescaling). In particular, recall that q1
transforms under constant shifts of �. Picking the bottom sign (c.f. [43]),
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Supersymmetric Instanton
[Loges, GS, Van Riet, ’23]

• Setting  at the potential minimum requires:

• Picking the bottom sign:

• This is the supersymmetric D-instanton.

• Another option is to consider  = constant (hence ), leaving only the type 
IIB axio-dilaton which has  which does not allow for regular wormholes.

• Non-singular wormhole solutions require non-zero .

u = v = 0

b, c 𝔮1 = 𝔮2 = 0
β = 2

u, v

These charges are conserved by the equations of motion, but q1 is clearly gauge-dependent
since C0 appears explicitly: q1 is a “Page charge” in the language of [42]. There is no
such ambiguity for q2, which is both gauge-independent and quantized. However, since q2 is
integer-quantized in units of (`s/`)6 and ` � `s, we are justified in taking a continuous-charge
approximation and will not be bothered with quantisation conditions.

For completeness, under the shift symmetries,
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Here h(r) is harmonic and normalized to h
0 = f/q

4 so that ?dh = vol4. Solutions have definite
parity when q1 = 0, which we take for simplicity when constructing numerical solutions. This
choice can be undone using the �1 transformation above as long as q2 is non-zero (which will
be the case for the non-singular solutions of interest).

4.2.3 Review of supersymmetric solutions

Here we review the supersymmetric instanton solutions which appear in the Klebanov-Witten
model [43]. These solutions serve as an anchor point to test our understanding of the trun-
cation, axion charges and especially whether or not our wormholes violate positivity bounds,
since these bounds are saturated for SUSY instantons.

We can see from the 5d equations of motion (4.17) that the matter stress tensor vanishes
exactly when
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with u = v = 0 sitting at the minimum of V. This statement is invariant under all of
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These charges are conserved by the equations of motion, but q1 is clearly gauge-dependent
since C0 appears explicitly: q1 is a “Page charge” in the language of [42]. There is no
such ambiguity for q2, which is both gauge-independent and quantized. However, since q2 is
integer-quantized in units of (`s/`)6 and ` � `s, we are justified in taking a continuous-charge
approximation and will not be bothered with quantisation conditions.

For completeness, under the shift symmetries,

�1q1 = �1q2 , �2q1 = 0 , �3q1 = 0 ,

�1q2 = 0 , �2q2 = 0 , �3q2 = 0 ,
(4.15)

and under the “rescaling symmetry,”

q1 7! a q1 , q2 7! a
�1q2 . (4.16)

In terms of the q1 and q2 charges, the (remaining) 5d equations of motion take the form
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(4.17)

Here h(r) is harmonic and normalized to h
0 = f/q

4 so that ?dh = vol4. Solutions have definite
parity when q1 = 0, which we take for simplicity when constructing numerical solutions. This
choice can be undone using the �1 transformation above as long as q2 is non-zero (which will
be the case for the non-singular solutions of interest).

4.2.3 Review of supersymmetric solutions

Here we review the supersymmetric instanton solutions which appear in the Klebanov-Witten
model [43]. These solutions serve as an anchor point to test our understanding of the trun-
cation, axion charges and especially whether or not our wormholes violate positivity bounds,
since these bounds are saturated for SUSY instantons.

We can see from the 5d equations of motion (4.17) that the matter stress tensor vanishes
exactly when

q1 � q2� = ±q2 e
�� (4.18)

with u = v = 0 sitting at the minimum of V. This statement is invariant under all of
the symmetries (all three shift symmetries and the rescaling). In particular, recall that q1
transforms under constant shifts of �. Picking the bottom sign (c.f. [43]),

�� e
�� =

q1
q2

= const. =) F3 = �ie
��

H3 . (4.19)
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Boundary Conditions
[Loges, GS, Van Riet, ’23]

• Metric Ansatz:  where =wormhole size (in AdS units).

• AdS solutions as , i.e., 

• The boundary conditions for the saxions  as  can be found by first identifying 
the mass eigenstates: expanding around the potential minimum and diagonalizing: 

they are both subject to the axion source term which goes as  as .

• Massless scalars  fall off as .

ds2
5 = f(r)2dr2 + (q2

0 + r2)dΩ2
4 q0

r → ∞

u, v r → ∞

𝔮2
2/r8 r → ∞

ϕ, χ, b, c 1/r4

This means that in this “approximation” the GS solution is regular only if the wormhole
is large enough (q0 > 0.7727) and for small wormholes the scalars diverge as (�u), v,� !
+1 as one moves into the bulk: the e↵ective string coupling gse

� goes to +1 while
the volumes of the S

2 and S
3 of T 1,1 both go to zero.

The above three (over)simplifications lead to the following picture. There is a balance between
� and b, c (via q2) that is needed to get smooth wormhole solutions of all sizes. If b, c are
set to zero then all potential wormholes are singular. If � is set to zero then it is clear that
large wormholes exist in this model; even with dramatic changes to the potential we saw
that regular GS wormholes can be found: presumably the true profiles will lie somewhere
between those of the � = 1 and � =

p
2 GS wormholes. The existence of small wormholes,

however, is less clear and must be addressed numerically. We will see that regular wormholes
of any size do exist, but the scalars inevitably grow very large in the neck region as one takes
q0 ⌧ 0.7727.

4.2.5 Numerical solutions

In constructing numerical solutions have the freedom to choose coordinates such that

q(r) =
q
q
2
0 + r2 , (4.27)

where q0 is the wormhole size (in AdS units) and r 2 R covers the entire geometry. We are
interested in AdS solutions for which f ! 1/q ⇠ 1/r as r ! 1 (recall equation (4.8)). The
boundary conditions for the scalars can be found in the following way. By expanding around
the minimum of V and diagonalizing, one finds two mass eigenstates:

u� v : m
2
1 = 12 , �1 = 6 ,

4u+ v : m
2
2 = 32 , �2 = 8 .

(4.28)

These are both subject to a source term from the axions in (4.17) which goes as q22(@h)
2 ⇠

q22f
�2(h0)2 ⇠ q22/r

8 for large r. We should thus anticipate u� v ⇠ 1/r6 and 4u+ v ⇠ log r/r8

for r ! 1.6 The scalars �,�, b, c are all massless and will fall o↵ as 1/r4.
For fixed q0 we use a shooting method to construct solutions which connect the neck region

to the asymptotic AdS region; “initial” conditions at r = 0,

f(0) = f0 , u(0) = u0 , v(0) = v0 , �(0) = �0 , �(0) = 0 ,

u
0(0) = 0 , v

0(0) = 0 , �
0(0) = 0 , �

0(0) = (�0)0 ,
(4.29)

must be chosen in such a way that, upon integrating the equations of motion out to some
rmax � max(1, q0), the solutions remain smooth and may be matched onto the AdS boundary
conditions just discussed. We can always pick �0 = 0 and use the SL(2,R) transformation
of equation (4.12) to shift � and rescale q2,� at the end to ensure that �(1) = 0 (the
combination of initial data (e��0)0 is invariant under this rescaling).

Requiring that the solution is smooth at the wormhole neck relates the initial condition
for f and the axion charge to the other initial data:

f
�2
0 = 3� 1

3
q
2
0V(u0, v0) ,

q22 = e
�4u0+�0q

6
0

h
6 +

⇣
6� q

2
0(e

�
�
0)20

⌘
f
�2
0

i
.

(4.30)

6The log r appears because the axion source terms go as 1/r8 = 1/r�2 for large r, and the resonant response
to this source term is not subdominant.
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Constructing Wormhole Solutions
[Loges, GS, Van Riet, ’23]

• For fixed wormhole size  and , use shooting 
method to construct solutions which connect the 
neck region to the asymptotic AdS region. 

• Adjust  to match BCs.

• Two-parameter family of wormhole solutions.

• For fixed , can arrange for all 

• Weak coupling: 

• Small curvatures: 

q0 (eϕχ0)′ 

u0, v0

q0 = a0/ℓ r :

eΦ = gseϕ

ℛ[g5], ℛ[g10] ∼ ℓ−2

Figure 1: The wormhole solution for q0 = 1 and (e��0)0 = 0.1. (Left) Field profiles around the
wormhole neck. (Right) The profiles match the expected power-law behaviors for r ! 1.

17



Dual CFT and Operators Positivity 
[Loges, GS, Van Riet, ’23]Dual CFT & operator positivity

Type IIB on T
1,1 is dual to an N = 1 quiver CFT with two nodes [Klebanov, Witten – ‘98]

e
��

 !
1

g
2
1

+
1

g
2
2

C0  ! ✓1 + ✓2

Z

S2

B2  !
1

g
2
1

�
1

g
2
2

Z

S2

C̃2  ! ✓1 � ✓2

(dC̃2 = dC2 � C0 dB2)

Dual operators:

O� = Tr(F1 ^ ?F1 + F2 ^ ?F2) OC0 = Tr(F1 ^ F1 + F2 ^ F2)

OB2 = Tr(F1 ^ ?F1 � F2 ^ ?F2) OC̃2
= Tr(F1 ^ F1 � F2 ^ F2)

Operator positivity:

hTr[(Fi ± ?Fi)
2]i � 0 =) hO�i± hOB2i � hOC0i± hOC̃2

i
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Violation of Positivity Bounds
[Loges, GS, Van Riet, ’23]

 With the fully explicit 10d gravity solution, we can check whether 

                                    This is always violated (for all  and )!q0 χ∞

Dual CFT & operator positivity

Type IIB on T
1,1 is dual to an N = 1 quiver CFT with two nodes [Klebanov, Witten – ‘98]
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One boundary vs two?
[Loges, GS, Van Riet, ’23]

One boundary vs. two?

In gluing to a single asymptotic boundary,
the numerical solutions easily satisfy the bounds
(monopole/dipole source for NSNS/RR fields):

hOC0i = 0

hOC̃2
i = 0

)
=) �4 � ±

q2
4
�1 X

G. J. Loges 10D Axion Wormholes 31 / 34



Positivity bounds?
[Loges, GS, Van Riet, ’23]

• For classical field configurations,  is a complete square of Hermitian 
operators and should be positive. 

• In QFT, we subtract an infinite constant when we normal order. The normal ordered 
operator is not a complete square.

• Evaluating on the quantum state, can be negative (similar argument 
for stress tensor in [Hofman, Maldacena, ’08]).

• Wormhole solutions connecting two asymptotic regions may correspond to such a quantum 
state in the dual CFT.

• Constructing such quantum state in the dual CFT is an interesting question for the future.

Tr(F ± ⋆F)2 ≥ 0

< Tr(F ± ⋆F)2 >



Summary



Summary
• Establish that GS wormhole is perturbatively stable. The 3-form picture makes gauge invariance and proper 

boundary boundary conditions transparent.

• Conclusion of stability may carry over to AdS space and with additional dilatons: (physical) perturbations 
are localized to the wormhole throat.

• Construct explicit Euclidean axion wormholes in flat and AdS space from string theory:

• Flat space wormholes from type IIA on : cannot Wick rotate to only Lorentzian branes.

• AdS space wormholes from type IIB on 

Not Giddings-Strominger type: saxions have a potential and are sourced by the axions.

Known CFT dual: violation of positivity bounds in the CFT state for two-boundary solutions.

Massive scalars  dual to irrelevant operators may play a crucial role in identifying such CFT state.

• Other conceptual issues remain, e.g., -parameters? Baby universes? For small wormholes (in AdS units) 
where one might integrate out wormhole effects a la Coleman, the solutions break down.
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u, v

α




