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Themes of this talk ...

There is a whole raft of supertrace identities associated with
large distance limits, a.k.a. dimensions that can decompactify,
that has not been noticed before.

These are true for any closed string theory (or theory with
modular invariance)

These identities seem to have profound implications: they forbid
power law running! (Non-renormalisation theorem)

More generally an aspect of UV/IR mixing




Outline

¢ An old but remarkable super trace 1dentity
o Higher dimensions
o Theories with higher dimensional limits

¢ No power-law running



An old but remarkable
supertrace identity



Only assumption of this talk: suppose as in closed string that finiteness is ensured
by Modular Invariance ...

The theory is defined by the modular invariant string partition function Z(t) where
modular invariant: requires Z(7) = Z(7’) where
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In principle Z(7) holds all the information about the spectrum: also (theorem) in a 4D
theory i1t can always be written

1
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where ¢ = e*™* and 7 = 7, + i7,. Think of this as the Fourier series of Z(z).



This symmetry mixes UV/IR maximally:
To see this in action let’s consider vacuum energy in any such theory:
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This integral is finite because (as long as there are no physical tachyons) Z(7) dies at
large 7, and & does not contain the 7, — 0 point
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However: a method due to Rankin and Selberg (1939/40) lets us write this finite
integral in another way — namely in terms the nett density of physical (level-
matched) states — given by (Fourier zero-mode) integral:
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RS use a transform to unfold & to the critical strip &
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Then using RS we see that ultimately the integral can be written as a limit ...

Inverse =" » Rankin, Selberg
R - » Zagier (1981)
Mellin In string theory: Kutasoy,
transform Seiberg; McClain, Roth,
O’Brien, Tan; Dienes;
Angelantonj, Florakis, Pioline,

Rabinovici




Let’s pause for a minute to see (as physicists) why this is remarkable:

There is a clear mapping from za'z, to the
Schwinger parameter £ when 7, > 1: by naively
integrating over the fundamental domain, we
physicists see a result mimicking the EFT
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Let’s pause for a minute to see (as physicists) why this is remarkable:

But according to RS this result 1s equal
to a very not EFT-like limit - if
anything it looks like a deep UV limit!!
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This is the ultimate UV/IR mixing. But there is more ...

Let’s try and evaluate this RS limat:
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It looks like it diverges because of the 1/7, prefactor in Z(7,) !!!



This is the ultimate UV/IR mixing. But there is more ...

Let’s try and evaluate this RS limat:
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Thus — if we define a regulated supertrace appropriate for infinite towers of states
for any operator X,

Str X = lim (_]-)F/Ystate G_WTQQ/MSZtate =0

7'2—)0
states

then here (where X = const) we see that any modular invariant 4D theory with a finite
A obeys a super trace relation

Strl1 = 0

Any tachyon-free modular invariant theory in 4D has Str(1) = O even when no SUSY!

* Dienes, Misaligned SUSY, 1994



Or to put it another way ... if we expand the density of states g(z,) around 7, = 0 it
generically would go like

1
9(7-2) — — X (C() + C 1o —|—CQ7'22 -+ )

T2

but a modular invariant theory must have C;; = 0 and must instead go like

1
g(TQ) — ’7'_2 X (017'2 _|_027-22 -+ )

(For the sake of argument I will assume an integer expansion but only the first non-
zero term needs to be an integer)



Thus we can get the answer, i.e. A = z(C,/3, by expanding the exponential
around 7, and picking off the first term C:

4
/{) S = iM2STI.M2 * Dienes, Misaligned SUSY, 1994

24 » Kutasov, Seiberg, 1994
* Dienes, Moshe, Myers 1995



Thus we can get the answer, i.e. A = z(C,/3, by expanding the exponential
around 7, and picking off the first term C:

4
[{) S = iM2STI.M2 * Dienes, Misaligned SUSY, 1994

24  Kutasov, Seiberg, 1994
» Dienes, Moshe, Myers 1995

This looks like the quadratically divergent term 1n field theory but this definitely is
not a field theory object — this supertrace is over the infinite string tower of states!!
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Higher dimensions



In theories with D > 4 space-time dimensions things get more constrained. The
reason why is that the partition function takes the form

Z(D) _ Z Qrrn T —m n

wherek =1 —D/2 .

(We can see it has to go like this to give the Schwinger integral the right powers of 7)

But now applying Rankin-Selberg we see that in a theory with D =4 + 6 ...

1
9(12) = 575 % (Co+ Clma + Co75 + ..
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—> we have Cy, Cy,...,Cs, =0



Thus in a theory with D = 4 + § expanding the expression for A”) we have

Str’ MF = (

forall k < 2 + 6 and
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In D = 4 only the cosmological constant leads to a constraint, namely Str(1) = 0
But in higher dimensions there are less trivial amplitudes that get constrained:
let’s now extend the discussion to more general (X). ...

ZX(D) — T9 Zanm nmqmqn

The operator X can be determined by modular completing the field theory
operator.



In D = 4 only the cosmological constant leads to a constraint, namely Str(1) = 0
But in higher dimensions there are less trivial amplitudes that get constrained:
let’s now extend the discussion to more general (X). ...

Z(D) — To Zanm Xomq ' q"

The operator X can be determined by modular completing the field theory
operator. Thus for example vacuum polarisation ...

Xo = 0
— E
Xl — % (Qi] — 1—22)
X = Xo+ X + 72X, . T
X = -2 (QH — ﬁ) Q%

Space-time helicity Gauge charges



For example in a 6 dimensional theory we find a constraint plus a one - loop
contribution to  167%/g¢ = 167%/g2.. + Ag -

Str’ @?{ _ 11—28_’51'35 1 = 0

and ...

Ag ~ Tx | =28t (Q4Q%) + =Sty Q% — St (@21\72) L &
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Theories with higher
dimensional limits



So the question is — what happens when a 4 dimensional theory has a
decompactification limit to a higher dimensional theory?



So the question is — what happens when a 4 dimensional theory has a
decompactification limit to a higher dimensional theory?

Consider a toy factorisable example:
(4) (base)
Ly = Zy + ZKK /winding
where the “base” theory 1s the states without their KK and winding modes
b — ! _
285 = S 4 K T
mn

and Zgg yinding are all the KK and winding mode factors of g, g.
e.g. for 6 = 1 it might be a simple circle factor of the form:

n/R—iR)? mR+7/R)?
Z ﬁ(m/R R) /4q( R+n/R)“/4

m,neEL

ZKK/Winding =



We can rearrange the contributions into modular invariant factors ...

Z.Eé) — (7-2—5/2 Zg)ase)) ' (T26/2 ZKK/Winding)

By examining the product at large radius the KK/winding factor turns into a simple
volume factor ...

MV
ZKK/Winding ~ 5/2
T2




We can rearrange the contributions into modular invariant factors ...

Z.Eé) — (7-2—5/2 Zg)ase)) ' (T26/2 ZKK/Winding)

By examining the product at large radius the KK/winding factor turns into a simple
volume factor ...

MV
ZKK/Winding ~ 5/2
T2

Putting the pieces together, at large volume we see that the 4D theory tends to the
4 + 6 dimensional theory times a volume factor:

. 1 (4) —38/2 »(base) (449)
Vlgnoo [M5V5 ZX] =T Zx = 2y



But at this point we notice a clash! ... we know Z §f+5) has to satisfy many more
constraints than the four dimensional theory

The only way to resolve this clash and for physics to be smooth at infinite radius is
for all the constraints to already be satisfied in the 4D theory ... it turns out this is
independent of the compactification radius:

{ The 4D theory will inherit the precise stricter internal ;
 cancellations of any higher-dimensional theory to which }
i can be decompactified. |



But at this point we notice a clash! ... we know Z §f+5) has to satisfy many more
constraints than the four dimensional theory

The only way to resolve this clash and for physics to be smooth at infinite radius is
for all the constraints to already be satisfied in the 4D theory ... it turns out this is
independent of the compactification radius:

{ The 4D theory will inherit the precise stricter internal ;
 cancellations of any higher-dimensional theory to which }
i can be decompactified. |

For example 167t2g(_;2 = 167°g-2 + A in a theory with § = 2 decompactification:

Str'@é— LStr’;1 = 0
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Generally we can expect a theory that can decompactify to look like this:
N
7(4) _ Z ZZ{ O,
1=1

The i indicates a sum over different sectors ... each with a “base” contribution Z/
multiplying KK/winding factors ®; which turn into volumes at large radius.



Generally we can expect a theory that can decompactify to look like this:

7(4) _ sz

The 1 indicates a sum over different sectors ... each with a “base’ contribution Zi’
multiplying KK/winding factors ®; which turn into volumes at large radius.

When 6 dimensions become large in some direction labelled a, some the ®; factors
contribute to a modular invariant sum @®¥ = Z cl.(“)@i yielding what we call the

T-volume with the remaining contributions going exponentially fast to zero:
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Generally we can expect a theory that can decompactify to look like this:
N

ZW = " 7/,
1=1

The 1 indicates a sum over different sectors ... each with a “base’ contribution Zi’
multiplying KK/winding factors ®; which turn into volumes at large radius.

When 6 dimensions become large in some direction labelled a, some the ®; factors
contribute to a modular invariant sum @®¥ = Z cl.(“)@i yielding what we call the

T-volume with the remaining contributions going exponentially fast to zero:
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RS derived modular invariant volume



So the cartoon looks like this ...

Zc;l)c]f: 0

=0

Z ¢t Cj=0
J
Some of these endpoint theories related by T-duality transformations - but they all
lead to a constraint that has to be satisfied in the 4D theory.
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Er ... who
mentioned SUSY? This is
true in any modular
invariant theory!

No, if the theory is
UV finite it must be
modular invariant — they
must remain exact

Let me show you ...




No power-law running



Why can we now expect a statement on power-law running?

It helps to think of this from an equivalent extra-dimensional field theory view point -
To see how RG running emerges we can insert an energy scale y by putting a cut-off

function & (u, t) into the one-loop Schwinger integral (c.f. Polchinski/Wetterich Exact RG):

4 > dt base
(X)pr(n) = /A 72y Zxk G (. 1)
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Why can we now expect a statement on power-law running?

It helps to think of this from an equivalent extra-dimensional field theory view point -
To see how RG running emerges we can insert an energy scale y by putting a cut-off

function & (u, t) into the one-loop Schwinger integral (c.f. Polchinski/Wetterich Exact RG):

e.g. G(u,t) = O(u°—t) =
“—2 dt base
<X>%4%(M) — /A_2 TZ’% )ZKK

In analogy with the string theory results we can always write

Z‘g})ase)

1
t—2(C{) +Cit+Cot* +...)

ase 1
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So at energies far below the KK scale, y < 1/R, we can set Zxx = 1 and we get 4D

running. €.g. the gauge coupling running is given by the log divergent term, C5, and we get

Ac(p) = (X)pd(n) = Cjlog(A%/p?) + const



So at energies far below the KK scale, y < 1/R, we can set Zxx = 1 and we get 4D

running. €.g. the gauge coupling running is given by the log divergent term, C5, and we get

Ac(p) = (X)pd(n) = Cjlog(A%/p?) + const

But at energies high above the KK scale, u > 1/R, the factor Zy resums and we get...

H dt base

<X>](5‘4'I)‘(u) — V5 //\—2 t1_|_5/2 Z/(\f' )
2 V / ) )
— S s C(A° —p°)

This p-dependence is our power-law running while A° is absorbed into the RG scheme.



The crux of the matter: in modular invariant theory: C;, = 0if 6 > 2!

In other words there can be no 6 > 2 power law running, and moreover there is no
contribution to any running (even logarithmic) from the states in the theory associated with

0 > 2 decompactification limits.

e The case of 6 = 2 is more subtle: these can give logarithmic running below the KK scale.
e However it is easy to see that however we cut-off the integral there can be no 6 = 2

power-law running if there is no 6 > 2 running (which as we just saw is unphysical).



Let’s see an example: running in a theory with a 6 = 2 decompactification limit

Modular invariant renormalisation: . SAA Dienes, 2021

The main difference to the extra dimensional FT picture is that to maintain modular
invariance, the cut-off function &(u, 7) must itself be modular invariant



Let’s see an example: running in a theory with a 6 = 2 decompactification limit

Modular invariant renormalisation: . SAA Dienes, 2021

The main difference to the extra dimensional FT picture is that to maintain modular
invariance, the cut-off function &(u, 7) must itself be modular invariant =
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Let’s see an example: running in a theory with a 6 = 2 decompactification limit

Modular invariant renormalisation: . SAA Dienes, 2021

The main difference to the extra dimensional FT picture is that to maintain modular
invariance, the cut-off function &(u, 7) must itself be modular invariant =

3.0

7. = M?*/u? 2.53_
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Inserting such a regulator cut-off function with a 2-torus volume factor we can compare
with the famous result of Dixon, Kaplunovsky and Louis, but recovering the entire energy

dependence in ese functons " SAA. Dienes, Nutricati

where
REP(z,0) = Y (kr2)"(Ku(krz/p) — oK, (kr2) )
k.r=1



Inserting such a regulator cut-off function with a 2-torus volume factor we can compare
with the famous result of Dixon, Kaplunovsky and Louis, but recovering the entire energy

dependence in Bessel functions ... SAA. Dienes. Nutricati
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Inserting such a regulator cut-off function with a 2-torus volume factor we can compare
with the famous result of Dixon, Kaplunovsky and Louis, but recovering the entire energy

dependence in Bessel functions ... SAA. Dienes. Nutricati
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Conclusions

* Important role of supertraces in allowing an EFT emerge from any modular invariant
theory.

e RS provides completely model agnostic understanding of this process

e Each decompactification limit lead to a set of supertrace constraints

e A form of non-renormalisation theorem which is satisfied due to modular invariance
* Phenomenological consequences - no power law running

 Removes “technical hierarchies”: 1.e. all the heavy modes yield a constant piece that
may be large but which is separated from light modes.

e Links/solutions to hierarchy problem?



