Fluxes, Tadpoles and Singularities

24th of June 2024, String Pheno'24

Andreas Braun

F-Theory

gives us a huge set of 4D $\mathcal{N}=1$ string vacua. Data:

- a Calabi-Yau fourfold X with an elliptic fibration $E \to X \to B$
- a flux G_4 s.t. (restricting to 4D SUSY Minkowski)

$$
G_4 \wedge J = 0 \qquad G_4 + \frac{c_2(X)}{2} \in H^{2,2}(X) \cap H^4(X, \mathbb{Z})
$$

'primitive Hodge cycle'

$$
\tfrac{1}{2}\int_X G_4\wedge G_4=\frac{\chi(X)}{24}+N_{D3}\qquad\qquad\text{(tadpole)}
$$

0th order approximation of effective $4D$ physics:

- number of complex structure moduli fixed by G_4
- non-abelian gauge groups from reducible fibres over codim $\epsilon = 1$ loci of B

Tadpoles

common lore: a generic choice of G_4 will already fix all complex structure moduli however, G_4 is quantized ...

- ... in which sense can something discrete be generic?
- ... especially if its length is bounded?

There is some tension here: **'tadpole problem'** [Bena, Blaback, Grana, Lust]

General Hodge Cycles

For a given Hodge cycle G_4 , the locus in $CS(X)$ where it is of Hodge type $(2, 2)$ is called its **Hodge locus**. If this is just points, G_4 is a **general Hodge cycle**.

Well-defined (and interesting) questions:

• for any given $p \in CS(X)$, what is the shortest general Hodge cycle which obeys the physical quantization condition?

General Hodge Cycles

For a given Hodge cycle G_4 , the locus in $CS(X)$ where it is of Hodge type $(2, 2)$ is called its **Hodge locus**. If this is just points, G⁴ is a **general Hodge cycle**.

Well-defined (and interesting) questions:

• for any given $p \in CS(X)$, what is the shortest general Hodge cycle which obeys the physical quantization condition?

KORK EXTERN EL VOOR

• is its length $\leq \chi(X)/24$?

General Hodge Cycles

For a given Hodge cycle G_4 , the locus in $CS(X)$ where it is of Hodge type $(2, 2)$ is called its **Hodge locus**. If this is just points, G⁴ is a **general Hodge cycle**.

Well-defined (and interesting) questions:

- for any given $p \in CS(X)$, what is the shortest general Hodge cycle which obeys the physical quantization condition?
- is its length $\leq \chi(X)/24$?

Which points $p \in CS(X)$ are selected by the condition that all complex structure **moduli are stabilized by fluxes?**

Exciting question in F-Theory, spectrum is very sensitive to this!

Finite[ne](#page-0-0)ss results (even for $W \neq 0$) established by [B.Bakker, T.Gri[mm](#page-4-0)[, C](#page-6-0)[.](#page-2-0)[S](#page-3-0)[c](#page-5-0)[h](#page-6-0)ne[ll,](#page-20-0) J.Tsimerman].

A toy model: $K3 \times K3$

Let $X=S_1\times S_2.$ We have $c_2(X)=$ even and $\chi(X)=24^2.$ All complex structure moduli are stablized provided that we can find a γ s.t.

$$
G_4 = Re\left(\gamma \Omega_1^{2,0} \wedge \overline{\Omega}_2^{2,0}\right) \in H^{2,2}(X)
$$

is integral. [P.Aspinwall, R.Kallosh]. This implies that both S_1 and S_2 are singular ('attractive'), i.e. the Picard group

$$
Pic(S) = H^2(S, \mathbb{Z}) \cap H^{1,1}(S)
$$

has rank $pic(S) = 20$.

This implies no complex structure deformations are left to deform by.

Attractive K3s

Theorem [T.Shioda, H.Inose]: K3 surfaces S with $pic(S) = 20$ are classified by inner form of transcendental lattice $T_S=Pic^\perp\subset H^2(S,\mathbb{Z})$:

$$
Q = \begin{pmatrix} p^2 & p \cdot q \\ p \cdot q & q^2 \end{pmatrix} = \begin{pmatrix} 2a & b \\ b & 2c \end{pmatrix} = [a, b, c]
$$

mod $SL(2,\mathbb{Z})$, where $\Omega^{2,0}=p+iq$ and $p,q\in H^2(S,\mathbb{Z})$.

There exists a γ such that

$$
G_4 = Re\left(\gamma \Omega_1^{2,0} \wedge \overline{\Omega}_2^{2,0}\right) \in H^{2,2}(X)
$$

is integral if and only if $det(Q_1Q_2) = D_1D_2$ is a perfect square.

KORK EXTERN EL VOOR

Solutions in M and F-Theory

This gives a finite list of solutions using $\int_{S_1\times S_2}G_4\wedge G_4\leq 48$ [P.Aspinwall, R.Kallosh; AB, Y.Kimura, T.Watari].

Solutions in M and F-Theory

This gives a finite list of solutions using $\int_{S_1\times S_2}G_4\wedge G_4\leq 48$ [P.Aspinwall, R.Kallosh; AB, Y.Kimura, T.Watari].

Also need data of elliptic fibration on (say) S_1 to have F-theory model!

Solutions in M and F-Theory

This gives a finite list of solutions using $\int_{S_1\times S_2}G_4\wedge G_4\leq 48$ [P.Aspinwall, R.Kallosh; AB, Y.Kimura, T.Watari].

Also need data of elliptic fibration on (say) S_1 to have F-theory model!

A primitive embedding $f: U \to Pic(S)$ fixes an elliptic fibration.

 $W = U^{\perp} \in Pic(S)$

and we can write

 $Pic(S) = U \oplus W$ W = 'frame lattice' = reducible fibres + Mordell-Weil

$$
W_{root} = \langle \{ \eta \in W | \eta^2 = -2 \} \rangle = \oplus_i \Gamma_i
$$

determines non-abelian gauge algebra.

KORKAR KERKER E VOOR

All W can be found as

$$
W(-1)=T_0^{\perp} \in N_i,
$$

where

- $T_0 = T_X^{\perp} \subset E_8$
- N_i ($i = 1..24$) are the Niemeier lattices (even, self-dual 24 dim).

i.e. one needs to work out all primitive embeddings of T_0 into the Niemeier lattices.

e.g. for $T_X = A_2$, $T_0 = E_6$ which we can embedd into

$$
N_{\beta} = D_{16} \oplus E_8; \mathbb{Z}_2
$$

\n
$$
N_{\gamma} = E_8^3
$$

\n
$$
N_{\zeta} = A_{17} \oplus E_7; \mathbb{Z}_6
$$

\n
$$
N_{\eta} = D_{10} \oplus E_7^2; \mathbb{Z}_2^2
$$

\n
$$
N_{\lambda} = A_{11} \oplus D_7 \oplus E_6; \mathbb{Z}_4 \times \mathbb{Z}_3
$$

\n
$$
N_{\mu} = E_6^4; \mathbb{Z}_3^2
$$

All F-Theory solutions

The complete set of attractive K3 surfaces appearing is [AB, Y.Kimura, T.Watari]

$Q = [a, b, c] \in$

 $\{[1, 0, 1], [1, 1, 1], [2, 0, 1], [2, 1, 1], [3, 0, 1], [3, 1, 1], [4, 0, 1], [4, 1, 1], [5, 0, 1], [5, 1, 1], [6, 0, 1],$ $[6, 1, 1]$, $[2, 0, 2]$, $[2, 1, 2]$, $[2, 2, 2]$, $[3, 0, 2]$, $[3, 1, 2]$, $[3, 2, 2]$, $[4, 0, 2]$, $[4, 2, 2]$, $[6, 0, 2]$, $[6, 2, 2]$, $[3, 0, 3]$, $[3, 3, 3]$, $[6, 0, 3]$, $[6, 3, 3]$, $[4, 0, 4]$, $[4, 4, 4]$, $[5, 0, 5]$, $[5, 5, 5]$, $[6, 0, 6]$, $[6, 6, 6]$, $[7, 7, 7]$, $[8, 8, 8]$]

[Braun, Fraiman, Grana, Lust, Parra De Freitas]: Wroot **is non-zero for all elliptic fibrations on any K3 surface in the above list** → **we always get non-abelian gauge groups!**

There are attractive K3 surfaces with elliptic fibrations with $W_{root} = \emptyset$, but these do not appear due to the tadpole bound. The first example appears for $\frac{1}{2}G \cdot G = 30$ and is [10, 10, 10]. Here T_0 embedds into the Leech lattice (which has no roots).

Remarkably, the points in moduli space selected by

- \bullet G_4 is a general Hodge cycle
- the tadpole bound

are very special indeed. Dropping either of these conditions non-Abelian gauge groups are not forced on us.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있음)

What about honest 4folds?

Most well-studied example: the Fermat sextic 4fold X in \mathbb{CP}^5 (no elliptic fibration so we are doing M-Theory) see also [K.Becker,E.Gonzalo, J.Walcher, T.Wrase]

$$
0 = Q(x_i) = \sum_{i=0}^{5} x_i^6
$$

$$
{}^{3,1}(X) = 426 \quad h_{prim}^{2,2}(X) = 1751 \quad \chi(X) = 2610
$$

middle cohomology given by residues

h

$$
H^{4-k,k}(X) = \langle \omega_{\beta} \rangle \qquad \sum_{i} \beta_{i} = 6k
$$

$$
\omega_{\beta} := Res\left(\frac{x^{\beta} \Omega_{0}}{Q(x)^{k+1}}\right)
$$

and Hodge locus has codimension

$$
\mathsf{rk}\,\rho_{IJ}(G) := \mathsf{rk}\,\omega_{\beta_I + \beta_J} \cdot G \qquad \qquad \sum_i (\beta_I)_i = 6
$$

 2990

(手) …

For any factorization

 $Q = f_0 P_0 + f_1 P_1 + f_2 P_2$

there is an algebraic cycle C (of complete intersection type) defined by

$$
C: \{f_0 = f_1 = f_2 = 0\}
$$

The Poincaré dual is of type $(2, 2)$ and integral (but not primitive). All we need to know about these is known.

algebraic cycles

e.g.

A naive count would imply you wildly overshoot the tadpole bound of 435/4.

algebraic cycles

Can implement correct quantization condition and primitivity [AB, R. Valandro; AB, H. Fortin, D. Lopez Garcia, R. Villaflor]. Record shortest general Hodge cycle has

$$
\frac{1}{2}G \cdot G = \frac{567}{4} > \frac{435}{4}.
$$

and remarkably

$$
\frac{567}{4}/426\simeq 1/3
$$

as originally conjectured by [Bena, Blaback, Grana, Lust].

However:

- $\bullet \,$ Not exhaustive search seach ($h^{2,2}_{prim} = 1751)$
- There exists no proof of the Hodge conjecture for X .

residues

It is known that

$$
H^{4}(X,\mathbb{Z}) = \langle \delta_{\beta}, C_{\sigma}^{\ell} \rangle_{\mathbb{Z}}
$$

$$
\int_{C_{\sigma}^{\ell}} \omega_{\beta} = \begin{cases} (2\pi i)^{2} \frac{\text{sgn}(\sigma)}{6^{3} \cdot 2} \mu^{\sum_{e=0}^{2} (\beta_{\sigma(2e)} + 1)(2(\ell_{2e+1} - \ell_{2e}) + 1)} & \text{if } \beta_{\sigma(2e-2)} + \beta_{\sigma(2e-1)} = 4\\ 0 & \text{otherwise.} \end{cases}
$$

$$
\int_{\delta_{\beta'}}\omega_{\beta}=\frac{(-1)^{|\beta|}}{6^{5}}\frac{1}{|\beta|!2\pi i}\prod_{i=0}^{5}\Gamma\left(\frac{\beta_{i}+1}{6}\right)\left(\zeta^{(\beta_{i}'+1)(\beta_{i}+1)}-\zeta^{(\beta_{i}')(\beta_{i}+1)}\right)
$$

so that we can work out a basis of $H^4(X,\mathbb{Z})$ in terms of the residues ω_β and compute ρ_{IJ} for any choice of G_4 .

This is again very hard due to the high dimensionality of the problem. We worked this out in [AB, H. Fortin, D. Lopez Garcia, R. Villaflor] by restricting to forms invariant under discrete symmetries, very quickly gets too expensive computational[ly.](#page-17-0) 2990 There is a pretty vast landscape of computations one might want to do and conjectures one might want to make ...

- 1. High dimensionality makes brute force attacks fairly unfeasable.
- 2. No analogues of the details we know for the Fermat sextic have been developed (but this seems doable).
- 3. A better understanding will almost certainly involve arithmetic (see e.g. work by [O.DeWolfe, A.Giryavets, S.Kachru, W.Taylor; K.Kanno, T.Watari; S.Kachru, R.Nally, W.Yang; H.Jockers, S.Kotlewski, P.Kuusela; P.Candelas, X.de la Ossa, P.Kuusela, J.McGovern; T.Grimm, D.van de Heisteeg]).
- 4. Are general Hodge cycles in singular geometries cheaper?

There is a pretty vast landscape of computations one might want to do and conjectures one might want to make ...

- 1. High dimensionality makes brute force attacks fairly unfeasable.
- 2. No analogues of the details we know for the Fermat sextic have been developed (but this seems doable).
- 3. A better understanding will almost certainly involve arithmetic (see e.g. work by [O.DeWolfe, A.Giryavets, S.Kachru, W.Taylor; K.Kanno, T.Watari; S.Kachru, R.Nally, W.Yang; H.Jockers, S.Kotlewski, P.Kuusela; P.Candelas, X.de la Ossa, P.Kuusela, J.McGovern; T.Grimm, D.van de Heisteeg]).
- 4. Are general Hodge cycles in singular geometries cheaper?

Thank you!