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cosmologies and models of particle physics in string theory.
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McAllister, JM, Schachner, Nally ‘24

Another complementary approach, that I will follow in this talk, is to 
study dynamical transitions between different vacua.

(or even between the empty set and non-trivial vacua!)

In this way, one might hope to address deep questions in Quantum Gravity, 
such as the nature of the cosmological measure, and the birth of our universe…
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one between a physical vacuum 
and the empty set!

∅
Witten ‘82
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Witten’s instanton describes the instability of a simple circle 
compactification against forming an expanding hole in spacetime:

Witten ‘82
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The spacetime metric is an analytic continuation of the 
Schwarzschild black hole:

compact circle coordinate

In Minkowskian signature, the bubble forms with critical radius, and 
uniformly accelerates toward the speed of light. The induced metric on an 

expanding bubble is that of de Sitter space.

Witten ‘82

Critical bubble radius:

Kaluza-Klein radius
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The space bounded by merging bubbles of nothing is a sphere.  
We know how to prevent a sphere from shrinking…
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A circle compactification yields a vacuum in D-1 dimensions with Wilson line axion:

Such a vacuum naturally contains axion domain walls, bounded by cosmic strings:

Domain wall

cosmic string
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… or the axion domain walls get nucleated together with the bubble of nothing:

This process can be described by an exact instanton solution 
that generalizes Witten’s instanton:

Approaching the bubble surface from spatial infinity  
the axion winds around its field space N times before relaxing to zero.

N units of flux bound on the bubble’s surface

compare related numerical solutions: Blanco-Pillado, Shlaer, Sousa, Urrestilla ’16
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The metric backreacts to a Reissner-Nordstrøm solution:

The critical bubble radius grows with the number of axion windings,

with backreaction quantified by axion field excursion:

and the bounce action grows:
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Flux backreaction remains controlled even at large N, and deforms 
Witten’s “cigar” geometry to a “decanter”…

∅ At large N the maximal circle radius is 
precisely the stabilized radius of the 
corresponding flux compactification!
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An axion domain wall caught between a pair of colliding bubbles of 
nothing, or created with it, turns on two form flux along a compact sphere:

The D-1 dimensional vacuum therefore 
spontaneously compactifies to D-2 

dimensions along a sphere with flux!

This is process has similarities with
Carroll, Johnson, Randall ‘09

but without needing higher dimensional 
de Sitter space as a seed.

Blanco-Pillado, Schwartz-Perlov, Vilenkin ’09

∅ ∅

N=3 units of flux on compact sphere
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… but an important question is whether bubble collisions are 
sufficiently soft in order to really yield near-vacua, rather than 

configurations with Planckian energies.

We have shown that collisions of fluxed bubbles of nothing create 
configurations that are topologically equivalent to flux 

compactifications in one lower dimension … 

If the effective potential for the length of the cigar 
looks anything like the effective radion potential,  

Argument: A pair of widely separated bubbles looks like 
compactification on a very long cigar, the overall energy is zero

the potential barrier prevents the 
sphere from shrinking too far.
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It therefore appears we have found a viable mechanism to populate the 
simplest kinds of “Freund-Rubin” flux vacua…

… such sphere compactifications are of course toy versions of the simplest 
kinds of Anti-de Sitter flux vacua, such as                 n     .

But ideally, we would like to understand how something like this can 
populate the flux landscape of Calabi-Yau compactifications! 
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Simple examples are Calabi-Yau hypersurfaces in                       : 

: torus fibered K3
: K3-fibered CY3
: CY3-fibered CY4
…

It seems obvious to expect that for every               there exists a 

such that                            is the boundary of a “half” 

and therefore there exist 1/2 BPS end of the world branes  
in SUSY string theories/M-theory on 

This implies that Calabi-Yau compactifications of type IIA 
string theory have 1/2 BPS end of the world branes…

… and thus by mirror symmetry the same is true in type IIB on               with n odd. 
cf a concrete such construction by Friedrich, Hebecker, Walcher ’23
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But if this can actually work hinges on the inclusion of 
some source of SUSY breaking.

(such as the Gauss-Bonnet term in                                                                                  ) Extebarria, Montero, Sousa, Valenzuela ’20

This we leave for future work…

Winding up axions from p-form gauge fields on                             generates 

(a subset) of fluxes on “half” of the fibration

This yields “half”-CY bubbles of nothing with fluxes, that can collide with each other 
to create genuine CY flux compactifications in lower dimensions.
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Consider for example type IIA on                         . We get axions

,     ,     ,     

These generate                                         fluxes on cycles of K3-fibered CY3! 

AdS flux vacua as in DeWolfe, Giryavets, Kachru, Taylor ‘05
Camara, Font, Ibañez ‘05

Similarly, in type IIB case, one gets axions                         and                      .

These generate                     fluxes.

GKP flux vacua Giddings, Kachru, Polchinski ‘01
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An inflationary mechanism?

Effectively, this mimics a scalar field rolling down an effective potential, 
but with fairly well-motivated “initial conditions”.

Expanding bubble solutions have induced de Sitter metric with
 see also: 

Banerjee, Danielsson, Dibitetto, Giri, Schillo ‘19 
Basile, Danielsson, Giri, Panizo ‘23

If an expanding bubble “sweeps up” axion domain walls, or any other 
positive tension domain wall, it lowers the Hubble rate:

cf “Witten bubbles + defect” : 
Friedrich, Hebecker, Walcher ’23

Bubble collisions are a natural reheating event, most similar to brane anti-brane inflation
Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi ‘03

(aspirational)
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I have outlined a new idea for populating flux landscapes 
via the collision of generalizations of bubbles of nothing.

In a simple toy model, Einstein-Maxwell on a circle, one can compute the 
relevant instantons analytically, and thus estimate the decay rate. In a sense 
one can interpret this as a probability distribution on the set of flux vacua.

Generalizations exist for Calabi-Yau compactifications, but I have left out 
the crucial ingredient of SUSY breaking…

Finally, expanding and colliding bubbles of nothing with flux are a natural 
candidate for inflationary backgrounds, with ingredients that appear readily 

available in string theory!

Conclusions
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