The Structure of the Flux Landscape - Unlimited Edition -

Thomas W. Grimm

Utrecht University

Based on:

2404.12422

with Damian van de Heisteeg

2311.09295 work in progress with Jeroen Monnee with Damian van de Heisteeg, David Prieto

String Phenomenology 2024, Padua

Introduction

Effective actions from string theory

- Common properties of effective theory when compactifying on Y

$$S^{(4)} = \int d^4x \sqrt{G} \left(R - \frac{1}{g^2(\phi)} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} - \theta(\phi) \operatorname{Tr} F_{\mu\nu} \tilde{F}^{\mu\nu} - K(\phi) (\partial \phi)^2 - V(\phi) \right)$$

Effective actions from string theory

- Common properties of effective theory when compactifying on Y

$$S^{(4)} = \int d^4x \sqrt{G} \left(R - \frac{1}{g^2(\phi)} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} - \theta(\phi) \operatorname{Tr} F_{\mu\nu} \tilde{F}^{\mu\nu} - K(\phi) (\partial\phi)^2 - V(\phi) \right)$$

Properties of functions $g^2(\phi), \theta(\phi), K(\phi), V(\phi)$ in terms *Y*-deformations

Effective actions from string theory

- Common properties of effective theory when compactifying on Y

$$S^{(4)} = \int d^4x \sqrt{G} \left(R - \frac{1}{g^2(\phi)} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} - \theta(\phi) \operatorname{Tr} F_{\mu\nu} \tilde{F}^{\mu\nu} - K(\phi) (\partial \phi)^2 - V(\phi) \right)$$

Properties of functions $g^2(\phi), \theta(\phi), K(\phi), V(\phi)$ in terms *Y*-deformations

- Much recent progress: limits towards the boundaries $\phi \to \infty$ and $V(\phi) \cong 0$

 In this talk: use properties of scalar potential to uncover universal structure of the vacuum landscape

→ patterns away from boundaries

 In this talk: use properties of scalar potential to uncover universal structure of the vacuum landscape

→ patterns away from boundaries

A key insight:

functions are algebraic vs. (polynomial)

functions are transcendental
(no polynomial relations, 'instantons')

 In this talk: use properties of scalar potential to uncover universal structure of the vacuum landscape

→ patterns away from boundaries

A key insight:

functions are algebraic vs. (polynomial)

functions are transcendental
(no polynomial relations, 'instantons')

Symmetry

susy? [Palti, Weigand, Vafa '22]

 In this talk: use properties of scalar potential to uncover universal structure of the vacuum landscape

→ patterns away from boundaries

A key insight:

functions are algebraic vs. (polynomial)

functions are transcendental
(no polynomial relations, 'instantons')

Symmetry

susy? [Palti,Weigand,Vafa '22]

Very different behavior when solving problems with integer parameters → change the distribution of flux vacua

- Concretely: flux compactifications of Type IIB and F-theory reviews [Grana][Douglas,Kachru][Denef]
- F-theory on compact Calabi-Yau fourfold Y
- 4-form flux: $G_4 \in H^4(Y, \mathbb{Z})$ $\int_Y G_4 \wedge G_4 = \ell$ 'tadpole condition'

- Concretely: flux compactifications of Type IIB and F-theory reviews [Grana][Douglas,Kachru][Denef]
- F-theory on compact Calabi-Yau fourfold Y
- 4-form flux: $G_4 \in H^4(Y, \mathbb{Z})$ $\int_Y G_4 \wedge G_4 = \ell$ 'tadpole condition' scalar potential: $V(\phi) = \frac{1}{\mathcal{V}_b^2} \int_Y \left(G_4 \wedge *G_4 G_4 \wedge G_4 \right)$

- Concretely: flux compactifications of Type IIB and F-theory reviews [Grana][Douglas,Kachru][Denef]
- F-theory on compact Calabi-Yau fourfold Y
- 4-form flux: $G_4 \in H^4(Y, \mathbb{Z})$ $\int_Y G_4 \wedge G_4 = \ell$ 'tadpole condition' • scalar potential: $V(\phi) = e^K \left(K^{I\bar{J}} D_I W \overline{D_J} W - 3|W|^2 \right)$

- Concretely: flux compactifications of Type IIB and F-theory reviews [Grana][Douglas,Kachru][Denef]
- F-theory on compact Calabi-Yau fourfold Y
- 4-form flux: $G_4 \in H^4(Y, \mathbb{Z})$ $\int_Y G_4 \wedge G_4 = \ell$ 'tadpole condition' • scalar potential: $V(\phi) = e^K \left(K^{I\bar{J}} D_I W \overline{D_J} W - 3|W|^2 \right)$

$$K = -2\log \mathcal{V}_{\rm b} - \log \int_{Y} \Omega \wedge \bar{\Omega} = -2\log \mathcal{V}_{\rm b} - \log \mathbf{\Pi}^T \Sigma \mathbf{\Pi}$$

- Concretely: flux compactifications of Type IIB and F-theory reviews [Grana][Douglas,Kachru][Denef]
- F-theory on compact Calabi-Yau fourfold Y
- 4-form flux: $G_4 \in H^4(Y, \mathbb{Z})$ $\int_Y G_4 \wedge G_4 = \ell$ 'tadpole condition' • scalar potential: $V(\phi) = e^K \left(K^{I\bar{J}} D_I W \overline{D_J} W - 3|W|^2 \right)$

$$K = -2\log \mathcal{V}_{b} - \log \int_{Y} \Omega \wedge \bar{\Omega} = -2\log \mathcal{V}_{b} - \log \mathbf{\Pi}^{T} \Sigma \mathbf{\Pi}$$
$$W = \int_{Y} \Omega \wedge G_{4} = \mathbf{G}_{4}^{T} \Sigma \mathbf{\Pi}$$

- Concretely: flux compactifications of Type IIB and F-theory reviews [Grana][Douglas,Kachru][Denef]
- F-theory on compact Calabi-Yau fourfold Y
- 4-form flux: $G_4 \in H^4(Y, \mathbb{Z})$ $\int_Y G_4 \wedge G_4 = \ell$ 'tadpole condition' • scalar potential: $V(\phi) = e^K \left(K^{I\bar{J}} D_I W \overline{D_J} W - 3|W|^2 \right)$

$$K = -2\log \mathcal{V}_{\rm b} - \log \int_{Y} \Omega \wedge \bar{\Omega} = -2\log \mathcal{V}_{\rm b} - \log \mathbf{\Pi}^{T} \Sigma \mathbf{\Pi}$$
$$W = \int_{Y} \Omega \wedge G_{4} = \mathbf{G}_{4}^{T} \Sigma \mathbf{\Pi} \qquad \qquad \mathbf{\Pi}_{i}(\phi) = \int_{C^{i}} \Omega \qquad \begin{array}{c} \text{periods of} \\ (4,0) \text{ form} \end{array}$$

- Example landscapes:
 - W=0 landscape: $\partial_{\phi^i} W = 0$ and W = 0
 - Minkowski landscape: $\partial_{\phi^i} V = 0$ and V = 0
 - AdS/dS landscape: $\partial_{\phi^i} V = 0$ and $V = \Lambda_0 \neq 0$

- Example landscapes:
 - W=0 landscape: $\partial_{\phi^i} W = 0$ and W = 0 this talk!
 - Minkowski landscape: $\partial_{\phi^i} V = 0$ and V = 0
 - AdS/dS landscape: $\partial_{\phi^i} V = 0$ and $V = \Lambda_0 \neq 0$

- Example landscapes:
 - W=0 landscape: $\partial_{\phi^i} W = 0$ and W = 0 this talk!
 - Minkowski landscape: $\partial_{\phi^i} V = 0$ and V = 0
 - AdS/dS landscape: $\partial_{\phi^i} V = 0$ and $V = \Lambda_0 \neq 0$
- W=0 vacua have been constructed in the past in Type IIB orientifolds

[DeWolfe,Giryavets,Kachru,Taylor '04] [DeWolfe '05] [Palti '07] [S.Lüst,Wiesner '22] [Becker etal.'22] [Kachru, Nally, Yang '20] [Bönisch,Elmi,Kashani-Poor, Klemm '22]

algebraicity reductions observed in Type IIB orientifolds

[Candelas, de la Ossa, Kuusela, McGovern '23]

- Example landscapes:
 - W=0 landscape: $\partial_{\phi^i} W = 0$ and W = 0 this talk!
 - Minkowski landscape: $\partial_{\phi^i} V = 0$ and V = 0
 - AdS/dS landscape: $\partial_{\phi^i} V = 0$ and $V = \Lambda_0 \neq 0$
- W=0 vacua have been constructed in the past in Type IIB orientifolds

[DeWolfe,Giryavets,Kachru,Taylor '04] [DeWolfe '05] [Palti '07] [S.Lüst,Wiesner '22] [Becker etal.'22] [Kachru, Nally, Yang '20] [Bönisch,Elmi,Kashani-Poor, Klemm '22]

- algebraicity reductions observed in Type IIB orientifolds
 [Candelas, de la Ossa, Kuusela, McGovern '23]
- generalization to Calabi-Yau fourfolds and essentially complete picture

[TG,van de Heisteeg '24]

How to find vacua? A benchmark example

F-theory on Hulek-Verrill fourfold

- Hulek-Verrill fourfold: $(X^1, \ldots, X^6) \in \mathbb{T}^5 = \mathbb{P}^5 \setminus \{X_1 \cdots X_6 = 0\}$

$$(X^{1} + X^{2} + X^{3} + X^{4} + X^{5} + X^{6})\left(\frac{\phi^{1}}{X^{1}} + \frac{\phi^{2}}{X^{2}} + \frac{\phi^{3}}{X^{3}} + \frac{\phi^{4}}{X^{4}} + \frac{\phi^{5}}{X^{5}} + \frac{\phi^{6}}{X^{6}}\right) = 1 \qquad h^{3,1} = 6$$

F-theory on Hulek-Verrill fourfold

- Hulek-Verrill fourfold: $(X^1, \ldots, X^6) \in \mathbb{T}^5 = \mathbb{P}^5 \setminus \{X_1 \cdots X_6 = 0\}$

$$(X^{1} + X^{2} + X^{3} + X^{4} + X^{5} + X^{6})\left(\frac{\phi^{1}}{X^{1}} + \frac{\phi^{2}}{X^{2}} + \frac{\phi^{3}}{X^{3}} + \frac{\phi^{4}}{X^{4}} + \frac{\phi^{5}}{X^{5}} + \frac{\phi^{6}}{X^{6}}\right) = 1 \qquad h^{3,1} = 6$$

Periods: expanded around large complex structure [Jockers,Kotlewski,Kuusela '23]

$$\mathbf{\Pi} = \begin{pmatrix} \Pi^{0} \\ \Pi^{I} \\ \Pi_{IJ} \\ \Pi_{IJ} \\ \Pi_{I} \\ \Pi_{0} \end{pmatrix} \qquad \text{e.g.} \qquad \Pi^{0} = \sum_{n_{1},\dots,n_{6}=0}^{\infty} \left(\frac{(n_{1}+\dots+n_{6})!}{n_{1}!\cdots n_{6}!} \right)^{2} (\phi^{1})^{n_{1}} \cdots (\phi^{6})^{n_{6}} \\ \Pi^{I} = \Pi^{0} \frac{\log \phi^{I}}{2\pi i} + 2 \sum_{n_{1},\dots,n_{6}} (H_{n_{1}+\dots+n_{6}} - H_{n_{I}}) (\phi^{1})^{n_{1}} \cdots (\phi^{6})^{n_{6}}$$

F-theory on Hulek-Verrill fourfold

- Hulek-Verrill fourfold: $(X^1, \ldots, X^6) \in \mathbb{T}^5 = \mathbb{P}^5 \setminus \{X_1 \cdots X_6 = 0\}$

$$(X^{1} + X^{2} + X^{3} + X^{4} + X^{5} + X^{6})\left(\frac{\phi^{1}}{X^{1}} + \frac{\phi^{2}}{X^{2}} + \frac{\phi^{3}}{X^{3}} + \frac{\phi^{4}}{X^{4}} + \frac{\phi^{5}}{X^{5}} + \frac{\phi^{6}}{X^{6}}\right) = 1 \qquad h^{3,1} = 6$$

Periods: expanded around large complex structure [Jockers,Kotlewski,Kuusela '23]

$$\mathbf{\Pi} = \begin{pmatrix} \Pi^{0} \\ \Pi^{I} \\ \Pi_{IJ} \\ \Pi_{IJ} \\ \Pi_{I} \\ \Pi_{0} \end{pmatrix} \qquad \text{e.g.} \qquad \Pi^{0} = \sum_{n_{1},...,n_{6}=0}^{\infty} \left(\frac{(n_{1}+\ldots+n_{6})!}{n_{1}!\cdots n_{6}!} \right)^{2} (\phi^{1})^{n_{1}}\cdots(\phi^{6})^{n_{6}} \\ \Pi^{I} = \Pi^{0} \frac{\log \phi^{I}}{2\pi i} + 2\sum_{n_{1},...,n_{6}} (H_{n_{1}+\ldots+n_{6}} - H_{n_{I}})(\phi^{1})^{n_{1}}\cdots(\phi^{6})^{n_{6}}$$

• W=0 flux vacua: $\mathbf{G}_{4}^{T} \Sigma \mathbf{\Pi} = \mathbf{G}_{4}^{T} \Sigma \partial_{\phi^{I}} \mathbf{\Pi} = 0$ very transcendental \rightarrow solve exactly?

Flux vacua from symmetries

- Magic of symmetry: Monodromy $M_{\rm s} \cdot M_{\rm u}$

Flux vacua from symmetries

Magic of symmetry:

Monodromy

 $M_{
m s}\cdot M_{
m u}$.

used to classify/study infinite distance limits

[TG,Palti,Valenzuela],...

<u>Observe</u>: Periods split off a piece that are K3 periods → K3 parts of periods are algebraic in coords $t^i(\phi)$ (after using transcendental K3 mirror map)

- M_s - odd flux: $G_4 = g^0 v^- + g^i v_i + g_0 v_-$ → breaks symmetry → pick out the K3 periods

- → M_s odd flux: $G_4 = g^0 v^- + g^i v_i + g_0 v_-$ → breaks symmetry → pick out the K3 periods
- on symmetric locus $\phi_1 = \phi_2$: $\partial_+ W = \partial_i W = W = 0$

- → M_s odd flux: $G_4 = g^0 v^- + g^i v_i + g_0 v_-$ → breaks symmetry → pick out the K3 periods
- on symmetric locus $\phi_1 = \phi_2$: $\partial_+ W = \partial_i W = W = 0$

$$\partial_{-}W|_{\phi^{1}=\phi^{2}} = W_{\mathrm{K3}}(\phi^{i}) = \varpi^{0}\left(g_{0} + g_{i}\mathbf{t}^{i} + 2g^{0}\sum_{i < j}\mathbf{t}^{i}\mathbf{t}^{j}\right)$$

- → M_{s} odd flux: $\mathbf{G}_{4} = g^{0}\mathbf{v}^{-} + g^{i}\mathbf{v}_{i} + g_{0}\mathbf{v}_{-}$ → breaks symmetry → pick out the K3 periods
- on symmetric locus $\phi_1 = \phi_2$: $\partial_+ W = \partial_i W = W = 0$

$$\partial_{-}W|_{\phi^{1}=\phi^{2}} = W_{\mathrm{K}3}(\phi^{i}) = \varpi^{0}\left(g_{0} + g_{i}\mathbf{t}^{i} + 2g^{0}\sum_{i < j}\mathbf{t}^{i}\mathbf{t}^{j}\right)$$

$$V|_{\phi^{1}=\phi^{2}} = \mathcal{V}_{b}^{-2} e^{K_{K3}} |W_{K3}|^{2} = \frac{\mathcal{V}_{b}^{-2}}{\sum_{i < j} \mathfrak{t}^{i} \mathfrak{t}^{j}} \left| g_{0} + g_{i} \mathfrak{t}^{i} + 2g^{0} \sum_{i < j} \mathfrak{t}^{i} \mathfrak{t}^{j} \right|^{2}$$

- → M_s odd flux: $G_4 = g^0 v^- + g^i v_i + g_0 v_-$ → breaks symmetry → pick out the K3 periods
- on symmetric locus $\phi_1 = \phi_2$: $\partial_+ W = \partial_i W = W = 0$

$$\partial_{-}W|_{\phi^{1}=\phi^{2}} = W_{\mathrm{K}3}(\phi^{i}) = \varpi^{0}\left(g_{0} + g_{i}\mathfrak{t}^{i} + 2g^{0}\sum_{i< j}\mathfrak{t}^{i}\mathfrak{t}^{j}\right)$$

$$V|_{\phi^{1}=\phi^{2}} = \mathcal{V}_{b}^{-2} e^{\mathbf{K}_{K3}} |W_{K3}|^{2} = \frac{\mathcal{V}_{b}^{-2}}{\sum_{i < j} \mathfrak{t}^{i} \mathfrak{t}^{j}} \left| g_{0} + g_{i} \mathfrak{t}^{i} + 2g^{0} \sum_{i < j} \mathfrak{t}^{i} \mathfrak{t}^{j} \right|^{2}$$

all exponentials absent \rightarrow polynomial, not transcendental

→ exact flux vacua in the middle of the moduli space
 → Type IIB: stabilize dilaton-axion, complex structure,
 7-brane moduli exactly

fix all complex structure moduli: first use S₆ monodromy symmetry
 → one remaining modulus t

1.0

0.0 0.2 0.4 0.6 0.8

10 vacua satisfying the tadpole bound $\chi = 720$: red dots

t	$\frac{i}{2\sqrt{3}}^*$	$\frac{i}{\sqrt{6}}$	$\frac{1}{2} + \frac{i}{2\sqrt{6}}$	$\frac{i}{2}$	$\frac{1}{3} + \frac{i}{6}$	$\frac{i}{\sqrt{3}}$	$\frac{1}{4} + \frac{i}{4\sqrt{3}}^*$	$\frac{1}{2} + \frac{i}{4\sqrt{3}}$	$\frac{1}{2} + \frac{i}{2\sqrt{3}}$	$\frac{i\sqrt{15}}{6}$
ϕ	$\frac{1}{16}$	$\frac{3\sqrt{3}-5}{4}$	$-\frac{5+3\sqrt{3}}{4}$	$\frac{1}{4} - \frac{\sqrt{3}}{8}$	$\frac{1}{4} + \frac{\sqrt{3}}{8}$	$\frac{1}{22+9\sqrt{6}}$	$\frac{1}{4}$	$-\frac{22+9\sqrt{6}}{2}$	$-\frac{1}{2}$	$\frac{1}{64}$

- Gauge coupling function for RR U(1)s in IIB orientifolds and F-theory
 - \rightarrow holomorphic function $f(\phi)$ of complex structure of Y (includes τ)

N=1 mirror symmetry:
$$f(t) = it^m \mathcal{K}_m + \sum_{\kappa_m} c_{\kappa_m} e^{2\pi i t^m \kappa_m}$$
 [TG '10]

- Gauge coupling function for RR U(1)s in IIB orientifolds and F-theory
 - \rightarrow holomorphic function $f(\phi)$ of complex structure of Y (includes τ)

N=1 mirror symmetry: $f(t) = it^m \mathcal{K}_m + \sum_{\kappa_m} c_{\kappa_m} e^{2\pi i t^m \kappa_m}$ [TG '10]

 $f(t_*)$ special? Potential answer to theta-problem $\theta = \text{Im}f(t_*)$?

[Cecotti,Vafa '18]

- Gauge coupling function for RR U(1)s in IIB orientifolds and F-theory
 - \rightarrow holomorphic function $f(\phi)$ of complex structure of Y (includes τ)

N=1 mirror symmetry: $f(t) = it^m \mathcal{K}_m + \sum_{\kappa_m} c_{\kappa_m} e^{2\pi i t^m \kappa_m}$ [TG '10]

 $f(t_*)$ special? Potential answer to theta-problem $\theta = \text{Im}f(t_*)$? [Cecotti,Vafa '18]

Surprising observations:

(1) Hodge theory: must exist coords to make it algebraic $f(\mathfrak{t}) = i\mathfrak{t}^m \mathcal{K}_m$ [TG,Heisteeg '24] + in progress

- Gauge coupling function for RR U(1)s in IIB orientifolds and F-theory
 - \rightarrow holomorphic function $f(\phi)$ of complex structure of Y (includes τ)

N=1 mirror symmetry: $f(t) = it^m \mathcal{K}_m + \sum_{\kappa_m} c_{\kappa_m} e^{2\pi i t^m \kappa_m}$ [TG '10]

 $f(t_*)$ special? Potential answer to theta-problem $\theta = \text{Im}f(t_*)$? [Cecotti,Vafa '18]

- Surprising observations:
 - (1) Hodge theory: must exist coords to make it algebraic $f(\mathfrak{t}) = i\mathfrak{t}^m \mathcal{K}_m$ [TG,Heisteeg '24] + in progress
 - (2) Tadpole bound is key: e.g. in example Re $\mathfrak{t} = 0, \frac{1}{4}, \frac{1}{3}, \frac{1}{2} \rightarrow \phi = \operatorname{Re}\phi$ generalizing [Cecotti, Vafa '18] [Bönisch, Elmi, Kashani-Poor, Klemm '22]

Structure of W=0 Flux Landscape

[TG,Monnee]

search for W=0 vacua: $W(\phi_*(n)) = 0$ → solve problem over integers

[TG,Monnee]

- search for W=0 vacua: $W(\phi_*(n)) = 0$ → solve problem over integers
- Intuitively:
 If W(x) = 0 is tame (not too wild) and
 transcendental it hits the integers rarely.

[TG,Monnee]

- search for W=0 vacua: $W(\phi_*(n)) = 0$ → solve problem over integers
- Intuitively:
 If W(x) = 0 is tame (not too wild) and
 transcendental it hits the integers rarely.
 - <u>However</u>: This changes if it has an algebraic part. This part is due to symmetry.

[TG,Monnee]

- → search for W=0 vacua: $W(\phi_*(n)) = 0$ → solve problem over integers
- Intuitively:
 If W(x) = 0 is tame (not too wild) and
 transcendental it hits the integers rarely.

.

<u>However</u>: This changes if it has an algebraic part. This part is due to symmetry.

 made precise in theory of unlikely intersections (part of 'tameness revolution')
 → Pila-Wilkie and Ax-Schanuel theorems [Bakker,Tsimerman '17],[Gao,Klingler '21], [Chiu '21]...

Zilber–Pink conjecture for the Hodge locus (partial proof)

[Baldi,Klingler,Ullmo '21]

- Key lies in understanding the transcendentality of periods (without computing them)
 - → measure of transcendentality [Baldi,Klingler,Ullmo '21]

- Key lies in understanding the transcendentality of periods (without computing them)
 - → measure of transcendentality [Baldi,Klingler,Ullmo '21]

level of Hodge structure $\ell_{\mathcal{S}}$ at generic point in a locus $\mathcal{S} \subset \mathcal{M}$

compare with classification of boundaries using HT

- Key lies in understanding the transcendentality of periods (without computing them)
 - → measure of transcendentality [Baldi,Klingler,Ullmo '21]

level of Hodge structure $\ell_{\mathcal{S}}$ at generic point in a locus $\mathcal{S} \subset \mathcal{M}$

compare with classification of boundaries using HT

- Key lies in understanding the transcendentality of periods (without computing them)
 - → measure of transcendentality [Baldi,Klingler,Ullmo '21]

level of Hodge structure $\ell_{\mathcal{S}}$ at generic point in a locus $\mathcal{S} \subset \mathcal{M}$

compare with classification of boundaries using HT

l M

- Key lies in understanding the transcendentality of periods (without computing them)
 - → measure of transcendentality [Baldi,Klingler,Ullmo '21]

level of Hodge structure $\ell_{\mathcal{S}}$ at generic point in a locus $\mathcal{S} \subset \mathcal{M}$

compare with classification of boundaries using HT

l.M

 $\ell_{\mathcal{M}} = 1$ elliptic curve, K3 K3 × K3, CY₃ × T^2

- Key lies in understanding the transcendentality of periods (without computing them)
 - → measure of transcendentality [Baldi,Klingler,Ullmo '21]

level of Hodge structure $\ell_{\mathcal{S}}$ at generic point in a locus $\mathcal{S} \subset \mathcal{M}$

compare with classification of boundaries using HT

 $\ell_{\mathcal{M}} = 1 \qquad \qquad \ell_{\mathcal{M}} = 3$ elliptic curve, K3 K3 × K3, CY₃ × T² CY₃, CY₄

- Key lies in understanding the transcendentality of periods (without computing them)
 - → measure of transcendentality [Baldi,Klingler,Ullmo '21]

level of Hodge structure $\ell_{\mathcal{S}}$ at generic point in a locus $\mathcal{S} \subset \mathcal{M}$

$$\begin{array}{ll} \ell_{\mathcal{M}} = 1 & \\ \text{elliptic curve, K3} \\ \text{K3 \times K3, CY_3 \times T^2} & \text{CY}_3, & \text{CY}_4 & \\ \end{array} \begin{array}{ll} \ell_{\mathcal{M}} > 3 & \\ \text{CY}_n, n > 4 \end{array}$$

[TG,van de Heisteeg '24]

- Level can reduce along symmetry loci CY_4 $\ell_M = 3 \rightarrow \ell_S = 1$

[TG,van de Heisteeg '24]

- Level can reduce along symmetry loci CY_4 $\ell_M = 3 \rightarrow \ell_S = 1$

new symmetry operator:

new Hodge tensor

[TG,van de Heisteeg '24]

- Level can reduce along symmetry loci CY_4 $\ell_{\mathcal{M}} = 3 \rightarrow \ell_{\mathcal{S}} = 1$

new symmetry operator:

• $M_{
m s}$ on orbifold locus

new Hodge tensor

 $M_{\rm s} \in \bigoplus_{p,q} H^{p,q} \otimes (H^{p,q})^{\vee}$

[TG,van de Heisteeg '24]

- Level can reduce along symmetry loci CY_4 $\ell_{\mathcal{M}} = 3 \rightarrow \ell_{\mathcal{S}} = 1$

new symmetry operator:

- $M_{
 m s}$ on orbifold locus
- G_4 with W = 0 on vacuum locus

new Hodge tensor

 $M_{s} \in \bigoplus_{p,q} H^{p,q} \otimes (H^{p,q})^{\vee}$ $G_{4} \in H^{2,2}$

- reductions in Calabi-Yau fourfolds:
 - $\ell_{\mathcal{M}} = 3 \quad \rightarrow \text{ periods are generically transcendental}$ finite enhanced symmetry loci finite flux vacua not on an enhanced symmetry locus

[Baldi,Klingler,Ullmo '21] [TG,van de Heisteeg '24]

reductions in Calabi-Yau fourfolds:

- $\ell_{\mathcal{M}} = 3 \quad \Rightarrow \text{ periods are generically transcendental}$ finite enhanced symmetry loci finite flux vacua not on an enhanced symmetry locus
- $\ell_{S} = 1 \rightarrow \text{part of the periods must become algebraic}$ enhanced symmetry loci or flux vacua in S are dense (no tadpole bound)

[Baldi,Klingler,Ullmo '21] [TG,van de Heisteeg '24]

reductions in Calabi-Yau fourfolds:

- $\ell_{\mathcal{M}} = 3 \quad \Rightarrow \text{ periods are generically transcendental}$ finite enhanced symmetry loci finite flux vacua not on an enhanced symmetry locus
- $\ell_{S} = 1 \rightarrow$ part of the periods must become algebraic enhanced symmetry loci or flux vacua in S are dense (no tadpole bound)
- $\ell_{\mathcal{S}} = 0 \rightarrow \text{only if } \mathcal{S} \text{ is a point, e.g. complex multiplication points}$

[Baldi,Klingler,Ullmo '21] [TG,van de Heisteeg '24]

generalizing [Gukov, Vafa '02]

Summary and comments

• Transcendental (instantons) or Algebraic \Leftrightarrow Symmetry

Summary and comments

• Transcendental (instantons) or Algebraic \Leftrightarrow Symmetry

finite (rare) number of vacua

dense set of vacua

Summary and comments

Transcendental (instantons)

or Algebraic \Leftrightarrow Symmetry

finite (rare) number of vacua

dense set of vacua (finite after imposing tadpole bound

[Cattani,Deligne,Kaplan] [Bakker,TG,Schnell,Tsimerman])
Summary and comments

• Transcendental (instantons) or Algebraic \Leftrightarrow Symmetry

finite (rare) number of vacua

dense set of vacua

(finite after imposing tadpole bound [Cattani,Deligne,Kaplan] [Bakker,TG,Schnell,Tsimerman])

excluding point-like loci: pattern predicted by a theorem [Baldi,Klingler,Ullmo '21]
 → understanding point-like loci related to some hard math conjectures

Summary and comments

• Transcendental (instantons) or Algebraic \Leftrightarrow Symmetry

finite (rare) number of vacua

dense set of vacua

(finite after imposing tadpole bound [Cattani,Deligne,Kaplan] [Bakker,TG,Schnell,Tsimerman])

- excluding point-like loci: pattern predicted by a theorem [Baldi,Klingler,Ullmo '21]
 - → understanding point-like loci related to some hard math conjectures
 - → tadpole conjecture quantifies when point-like loci are absent

[Bena,Blaback,Graña,Lüst '20]

Summary and comments

• Transcendental (instantons) or Algebraic \Leftrightarrow Symmetry

finite (rare) number of vacua

dense set of vacua

(finite after imposing tadpole bound [Cattani,Deligne,Kaplan] [Bakker,TG,Schnell,Tsimerman])

excluding point-like loci: pattern predicted by a theorem [Baldi,Klingler,Ullmo '21]

- → understanding point-like loci related to some hard math conjectures
- → tadpole conjecture quantifies when point-like loci are absent

[Bena,Blaback,Graña,Lüst '20]

- observed in examples that algebraicity of periods is related to symmetry of compactification space
- → Generalized symmetry for higher Hodge tensors? 2D CFT interpretation?

 Starting to see how powerful tools from Hodge theory and tame geometry allow us to uncover structure of the W=0 flux landscape

- Starting to see how powerful tools from Hodge theory and tame geometry allow us to uncover structure of the W=0 flux landscape
- First explicit landscape of exact W=0 vacua in F-theory (genuine CY fourfold) → flat directions or all moduli fixed

- Starting to see how powerful tools from Hodge theory and tame geometry allow us to uncover structure of the W=0 flux landscape
- First explicit landscape of exact W=0 vacua in F-theory (genuine CY fourfold) → flat directions or all moduli fixed
- Explained interplay between symmetry vs. transcendentality (presence of exp. corrections)

- Starting to see how powerful tools from Hodge theory and tame geometry allow us to uncover structure of the W=0 flux landscape
- First explicit landscape of exact W=0 vacua in F-theory (genuine CY fourfold) → flat directions or all moduli fixed
- Explained interplay between symmetry vs. transcendentality (presence of exp. corrections)

Future: • extend beyond W=0 vacua

- Starting to see how powerful tools from Hodge theory and tame geometry allow us to uncover structure of the W=0 flux landscape
- First explicit landscape of exact W=0 vacua in F-theory (genuine CY fourfold) → flat directions or all moduli fixed
- Explained interplay between symmetry vs. transcendentality (presence of exp. corrections)

- **Future:** extend beyond W=0 vacua
 - sharp o-minimal structures (have notion of complexity)
 → precise statements about the number of vacua initiated in [TG, Schlechter, van Vliet '23][TG,Monnee '23]

Thanks!

e