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~ Much recent progress: limits towards the boundaries ¢ — o
and V(¢) =0
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= In this talk: use properties of scalar potential to uncover universal
structure of the vacuum landscape

— patterns away from boundaries

A key insight:
functions are algebraic vs.  tunctions are transcendental
(polynomial) (no polynomial relations, ‘instantons’)
Symrvnetry Very different behavior when solving

problems with integer parameters

susy? [Palti,Weigand, Vafa ‘22] — change the distribution of flux vacua
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I'-theory flux scalar potentials

~ Concretely: flux compactifications of Type IIB and F-theory

reviews [Grana][Douglas,Kachru][Denef]

= F-theory on compact Calabi-Yau fourfold Y
- 4form flux:  Gu€ H*(Y,Z) / Gy NGy =14 ‘tadpole condition’
Y

- scalar potential: V(@) = e (KUDIWD—JW 7 3|VV|2>

K:—Zlong—log/ QOAQ = —2logV, — logII! 11
Y

W=|[| QOANG, = GIy1a eriods of
/Y : 4 i) /C'z . ](?4,0) form



FFocusing on a landscape of vacua

- Example landscapes:
= W-0 landscape: 8(/57;]/[/ — 0 and W =0
- Minkowski landscape: 8¢iV — 0 and V =0
- AdS/dSlandscape: 0O4:V =0 and V = Ag# 0



FFocusing on a landscape of vacua

- Example landscapes:

~ W=0 landscape: a¢iW — 0 and W —10 this talk!

-~ Minkowski landscape: 8¢iV —0 and V =0
- AdS/dSlandscape: 0O4:V =0 and V = Ag# 0



FFocusing on a landscape of vacua

- Example landscapes:

- W=0 landscape: 9, W =0 and W =0 this talk!
-~ Minkowski landscape: 8(/57;‘/ —0 and V =0

- AdS/dSlandscape: 0O4:V =0 and V = Ag# 0

= W=0 vacua have been constructed in the past in Type IIB orientifolds

[DeWolfe,Giryavets,Kachru, Taylor ‘04] [DeWolfe ‘05] [Palti '07] [S.Liist, Wiesner "22] [Becker etal.’22]
[Kachru, Nally, Yang "20] [Bonisch,Elmi,Kashani-Poor, Klemm "22]

-~ algebraicity reductions observed in Type IIB orientifolds
[Candelas, de la Ossa, Kuusela, McGovern 23]



FFocusing on a landscape of vacua

- Example landscapes:

- W=0 landscape: 9, W =0 and W =0 this talk!
-~ Minkowski landscape: 8(/57;‘/ —0 and V =0

- AdS/dSlandscape: 0O4:V =0 and V = Ag# 0

= W=0 vacua have been constructed in the past in Type IIB orientifolds

[DeWolfe,Giryavets,Kachru, Taylor ‘04] [DeWolfe ‘05] [Palti '07] [S.Liist, Wiesner "22] [Becker etal.’22]
[Kachru, Nally, Yang "20] [Bonisch,Elmi,Kashani-Poor, Klemm "22]

-~ algebraicity reductions observed in Type IIB orientifolds
[Candelas, de la Ossa, Kuusela, McGovern 23]

- generalization to Calabi-Yau fourfolds and essentially complete picture
[TG,van de Heisteeg '24]



How to find vacua?

A benchmark example



I'-theory on Hulek-Verrill fourfold

® Hulek-Verrill fourfold: (x!,..., X% e T°—P5\{X; - X, =0}

1 2 3 4 5 6
I 2 - 4 5 6 @ @ ¢ ) 0 ) S0
(X e X B X X +X)(X1+X2+X3+X4+ﬁ+ﬁ =] h’ :6




I'-theory on Hulek-Verrill fourfold

= Hulek-Verrill fourfold:

(X1+X2+X3+X4+X5+X6)( +

¢1

o

(Xl,...,XG) e 2 :P5\{X1X6 :O}

Xl

+—=+

X o X

4 5 6
§4+%+%):1 s — 8

= Periods: expanded around large complex structure [Jockers KotlewskiKuusela ‘23]

(n1++n6)'

nl'nG'

)2 (1) ()
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® Hulek-Verrill fourfold: (x!,..., X% e T°—P5\{X; - X, =0}

1 2 3 4 5 6
1 2 3 4 5 e O @ ¢ ) 0 ) i Sl
(X SO e e +X)(X1+X2+X3+X4+ﬁ+ﬁ = ]’L’ :6

= Periods: expanded around large complex structure [Jockers KotlewskiKuusela ‘23]

0 00 2
/EI\ €0 I1° = Z ((n1+"'+n6)!) (i ()

nl'nG'

~ W=0 flux vacua: G4 XTI = G4T25’¢1H —

very transcendental — solve exactly?
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Numerical approach: start near a known limit - large complex structure -
and add corrections

2 Im(t) Leading i)olyttfomial terms

1.0¢

with tadf)ole / G4 A Gy <60
: f v

all zé:ﬂlowged Vacéla not cilose to the hmlt
e.g. not (very) weak string coupling

0.2 ‘ | | 04 ‘ ‘ ‘ 06 ‘ | ‘ 0.8 | ‘ ‘ I{e(t)

-~ along slice @1 = ... = @g in standard “Kéhler coordinate” ¢
11
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= Numerical approach: start near a known limit - large complex structure -

and add corrections

Im(t) Include exponential corrections
i (“instantons”) and / G 6l
; %

o.at\
\ t = i0.6320278644
0.58
o — 115000843018
\

. ts = 0.02241387778 + i0.4419999955

-
———
03 g
. BHEh

What are the exact values of all these vacua?

02 Are these 10 vacua special?

0.1

. Re(t)

| ! I ! | ! ! I | I ! ! | I ! !
0.2 04 0.6 0.8 1.0

-~ along slice @1 = ... = @g in standard “Kéhler coordinate” ¢

13



Flux vacua from symmetries

-~ Magic of symmetry: Monodromy M, - M,

14




Flux vacua from symmetries

-~ Magic of symmetry: Monodromy M, - M,
used to classify /study infinite

distance limits
[TG,Palti,Valenzuela],...

14



Flux vacua from symmetries

-~ Magic of symmetry: Monodromy M, - M,
used to classify /study infinite

used here! distance limits
[TG,Palti,Valenzuela],...

14



Flux vacua from symmelries

-~ Magic of symmetry: Monodromy M, - M,
used to classify /study infinite

used here! distance limits
[TG,Palti,Valenzuela],...

e.g. M,-orbifold Zg symmetry: M, - TI(¢', ¢%) = I1(¢%, &)

14



Flux vacua from symmelries

-~ Magic of symmetry: Monodromy M, - M,
used to classify /study infinite

used here! distance limits
[TG,Palti,Valenzuela],...

e.g. M,-orbifold Zg symmetry: M, - TI(¢', ¢%) = I1(¢%, &)
symmetry locus: q31 — ¢2 = ¢

14



Flux vacua from symmelries

-~ Magic of symmetry: Monodromy M, - M,
used to classify /study infinite

used here! distance limits
[TG,Palti,Valenzuela],...

e.g. M,-orbifold Zg symmetry: M, - TI(¢', ¢%) = I1(¢%, &)
symmetry locus: q31 — ¢2 = ¢

Observe: Periods split off a piece that are K3 periods |
— K3 parts of periods are algebraic in coords t*(¢)

(after using transcendental K3 mirror map)
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Flux vacua from symmelries

. M -oddflue Gy = gOV_ + givi + gov_—  — breaks symmetry

= on symmetric locus

P1 = @2

— pick out the K3 periods
LW =0W =W =0

15



Flux vacua from symmelries

-

Mg-odd flux: Gy = gOV_ + givi + gov_—  — breaks symmetry
— pick out the K3 periods

® oensymmetriclocus @1 =922 . W — ;W — W — 0
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Flux vacua from symmelries

e A oddflue Gy = gOV_ o givi + gov—_ — breaks symmetry
— pick out the K3 periods

® oensymmetriclocus @1 =922 . W — ;W — W — 0

O W s = Wia(d')= o° (go +git' +2¢° ) ¥ )
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Flux vacua from symmelries

. M -oddflue Gy = gOV_ + givi + gov_—  — breaks symmetry
— pick out the K3 periods

® onsymmetriclocus 01 =9¢2: 9. W — oW — W — 0

8_W|¢1:¢2 = WK3(¢Z) — (go + git" + 2g° Z titj>
<]

w2 . .
e

pl=¢? D Y
1<) 1<J

all exponentials absent — polynomial, not transcendental

— exact flux vacua in the middle of the moduli space

— Type 1IB: stabilize dilaton-axion, complex structure,

7-brane moduli exactly [TG,van Heisteeg]
15
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= fix all complex structure moduli: first use Sg monodromy symmetry
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= Gauge coupling function for RR U(1)s in IIB orientifolds and F-theory
— holomorphic function f(¢) of complex structure of Y (includes 7)
N1 mirnor symmetry. () K. £ 5 e A (TG ’10]

Rm

f(t.) special? Potential answer to theta-problem 6 = Im f(¢,)?
[Cecotti,Vafa ‘18]

- Surprising observations:

(1) Hodge theory: must exist coords to make it algebraic ~ f (t) — gt

| TG,Heisteeg "24] + in progress

(2) Tadpole bound is key:
e.g.inexample Ret =0, i, %, % — ¢ = Reo

generalizing [Cecotti, Vafa "18] [Bonisch,Elmi, Kashani-Poor,Klemm '22]
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Intuition behind general structure
|TG,Monnee]

~ search for W=0vacua: W {(¢.(n)) =0 — solve problem over integers

~ Intuitively:
If W(z) =0 is tame (not too wild) and
transcendental it hits the integers rarely. ?

However: This changes if it has an algebraic
part. This part is due to symmetry:.

~ made precise in theory of unlikely intersections (part of “tameness revolution’)

— Pila-Wilkie and Ax-Schanuel theorems [Bakker, Tsimerman "17],[Gao,Klingler "21],
[Chiu "21]...

Zilber-Pink conjecture for the Hodge locus (partial proof)
[Baldi,Klingler,Ullmo “21]
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A picture of the landscape

[TG,van de Heisteeg “24]

~ Level can reduce along symmetryloci CY4 fp =3 — fs=1

new symmetry operator: new Hodge tensor
My on orbifold locus M. e 69 HP? @ (HP)Y
P.q

» G4 with W = 0 on vacuum locus Gy € H??
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finite enhanced symmetry loci
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A picture of the landscape

= reductions in Calabi-Yau fourfolds:

¢rmg =3 — periods are generically transcendental
finite enhanced symmetry loci
finite flux vacua not on an enhanced symmetry locus

ts=1 - part of the periods must become algebraic

enhanced symmetry loci or flux vacua in § are dense
(no tadpole bound)

fs =0 — onlyif S isa point, e.g. complex multiplication points

o [Baldi,Klingler,Ullmo "21]
° S |TG,van de Heisteeg "24]

generalizing [Gukov,Vafa "02]
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~ excluding point-like loci: pattern predicted by a theorem [Baldi Klingler,Ulimo ‘21]

— understanding point-like loci related to some hard math conjectures

— tadpole conjecture quantifies when point-like loci are absent
Bena,Blaback,Graria,Liist “20]

= observed in examples that algebraicity of periods is related to symmetry of
compactification space

— Generalized symmetry for higher Hodge tensors? 2D CFT interpretation?

24



Conclusions

~ Starting to see how powerful tools from Hodge theory and tame
geometry allow us to uncover structure of the W=0 flux landscape



Conclusions

~ Starting to see how powerful tools from Hodge theory and tame
geometry allow us to uncover structure of the W=0 flux landscape

~ First explicit landscape of exact W=0 vacua in F-theory
(genuine CY fourfold) — flat directions or all moduli fixed



Conclusions

~ Starting to see how powerful tools from Hodge theory and tame
geometry allow us to uncover structure of the W=0 flux landscape

~ First explicit landscape of exact W=0 vacua in F-theory
(genuine CY fourfold) — flat directions or all moduli fixed

~ Explained interplay between
symmetry vs. transcendentality (presence of exp. corrections)



Conclusions

~ Starting to see how powerful tools from Hodge theory and tame
geometry allow us to uncover structure of the W=0 flux landscape

~ First explicit landscape of exact W=0 vacua in F-theory
(genuine CY fourfold) — flat directions or all moduli fixed

~ Explained interplay between
symmetry vs. transcendentality (presence of exp. corrections)

Future: > extend beyond W=0 vacua



Conclusions

~ Starting to see how powerful tools from Hodge theory and tame
geometry allow us to uncover structure of the W=0 flux landscape

~ First explicit landscape of exact W=0 vacua in F-theory
(genuine CY fourfold) — flat directions or all moduli fixed

~ Explained interplay between
symmetry vs. transcendentality (presence of exp. corrections)

Future: > extend beyond W=0 vacua

» sharp o-minimal structures (have notion of complexity)

— precise statements about the number of vacua
initiated in [TG, Schlechter, van Vliet ‘23][TG,Monnee ’23]



Thanks!



