Open Strings and Heterotic Instantons

Jacob M. Leedom String Phenomenology 2024 arXiv:2407.XXXXX

With Rafael Álvarez-García, Christian Kneißl, Nicole Righi

Why are heterotic string theories so strange?

- Type I & Type II superstrings feature a rich non-perturbative structure of D-branes
- These seem largely absent in the heterotic theories

 $HE:=(E_8\times E_8)\rtimes Z_2$ $HO:=Spin(32)/\mathbb{Z}_2$

• But *something* should be there

[Polchinski,'05]

[Kaidi, Ohmori, Tachikawa, Yonekura ,'23]

• Argument from S.Shenker – consider a *closed* string amplitude

$$
\mathcal{A}_0=\sum_{n=0}^\infty g_s^{2n-2}a_{2n}
$$

[Gross & Periwal,'88] [Shenker,'90]

$$
a_{2n} \simeq C^{-2n}(2n!)
$$

• Argument from S.Shenker – consider a *closed* string amplitude

$$
\mathcal{A}_0=\sum_{n=0}^\infty g_s^{2n-2}a_{2n}
$$

[Gross & Periwal,'88] [Shenker,'90]

$$
a_{2n} \simeq C^{-2n}(2n!)
$$

• Amplitude has radius of convergence $r=0$

• Argument from S.Shenker – consider a *closed* string amplitude

$$
\mathcal{A}_0=\sum_{n=0}^\infty g_s^{2n-2}a_{2n}
$$

[Gross & Periwal,'88] [Shenker,'90]

$$
a_{2n} \simeq C^{-2n}(2n!)
$$

- Amplitude has radius of convergence r=0
- True non-perturbative amplitude is a *trans-series*

$$
\mathcal{A} = \mathcal{A}_0 + \mathcal{A}_1 + \cdots
$$

$$
\mathcal{A}_1 = \mathcal{O}(e^{-C/g_s})
$$

- We know these effects arise from D-branes in Type I & II theories
- Maybe Shenker's arguments do not apply to heterotic theories?

- We know these effects arise from D-branes in Type I & II theories
- Maybe Shenker's arguments do not apply to heterotic theories?
- Unlikely:
	- TI/HO Duality arguments **[Silverstein,'96]**

$$
e^{-A_{\mathcal{TI}}} \leftrightarrow e^{-A_{\mathcal{HO}}/g_{\mathcal{HO}}}
$$

- We know these effects arise from D-branes in Type I & II theories
- Maybe Shenker's arguments do not apply to heterotic theories?
- Unlikely:
	- TI/HO Duality arguments

$$
e^{-A_{\mathcal{TI}}} \leftrightarrow e^{-A_{\mathcal{HO}}/g_{\mathcal{HO}}}
$$

[Silverstein,'96]

• Explicit results from 11d SUGRA **[Green & Rudra,'16]**

$$
\mathcal{S}_{10}^{(\text{TI/HO})} \supset \int d^{10}x \sqrt{-G} t_8 t_8 R^4 E_{\frac{3}{2}}(ig_s^{-1})
$$

$$
E_{\frac{3}{2}}(ig_s^{-1}) = 2\zeta(3)g_s^{-\frac{3}{2}} + 2\zeta(2)g_s^{\frac{1}{2}} + \sum_{n \in \mathbb{Z}^+} p_n(g_s)e^{-2\pi n/g_s}
$$

- We know these effects arise from D-branes in Type I & II theories
- Maybe Shenker's arguments do not apply to heterotic theories?
- Unlikely:
	- TI/HO Duality arguments

$$
e^{-A_{\mathcal{TI}}} \leftrightarrow e^{-A_{\mathcal{HO}}/g_{\mathcal{HO}}}
$$

• Explicit results from 11d SUGRA **[Green & Rudra,'16]**

$$
S_{10}^{(\text{TI/HO})} \supset \int d^{10}x \sqrt{-G} t_8 t_8 R^4 E_{\frac{3}{2}}(ig_s^{-1})
$$

$$
E_{\frac{3}{2}}(ig_s^{-1}) = 2\zeta(3)g_s^{-\frac{3}{2}} + 2\zeta(2)g_s^{\frac{1}{2}} + \sum_{n \in \mathbb{Z}^+} p_n(g_s)e^{-2\pi n/g_s}
$$

• Also tied to swampland principles: species scale

[van de Heisteeg, Vafa, Wiesner, Wu,'23]

[Silverstein,'96]

- We know these effects arise from D-branes in Type I & II theories
- Maybe Shenker's arguments do not apply to heterotic theories?
- Unlikely:
	- TI/HO Duality arguments

$$
e^{-A_{\mathcal{TI}}} \leftrightarrow e^{-A_{\mathcal{HO}}/g_{\mathcal{HO}}}
$$

• Explicit results from 11d SUGRA **[Green & Rudra,'16]**

[Silverstein,'96]

$$
\mathcal{S}^{\rm (TI/HO)}_{10} \supset \int d^{10}x \sqrt{-G} t_8 t_8 R^4 E_{\frac{3}{2}}(ig_s^{-1})
$$

• Naively, this should arise from an HO instanton-like objects $\pi_9(Spin(32)/\mathbb{Z}_2) \cong \mathbb{Z}_2$ What are these, and why do they give rise to Shenker effects?

Plan for Today

- Explain the objects that give rise to $\mathcal{O}(e^{-1/g_s})$ effects in heterotic theories
- Motivate why these objects produce such effects

Non-perturbative: $SL(2, \mathbb{Z})$

Perturbative: $\{\Omega, (-1)^{F_L}\}$

[Bergshoeff, Eyras, Halbersma, van der Schaar, Hull, '99]

[Bergshoeff, Eyras, Halbersma, van der Schaar, Hull, '99]

- The Hull orientifold of Type IIB has many interesting properties
	- There is a non-orientable D-string
	- Signals the presence of S-dual of O9-plane, charged under B_{10}
	- Must introduce 32 NS9-branes to cancel tadpole

- The Hull orientifold of Type IIB has many interesting properties
	- There is a non-orientable D-string
	- Signals the presence of S-dual of O9-plane, charged under B_{10}
	- Must introduce 32 NS9-branes to cancel tadpole

$$
S_{\text{DBI}}^{(\text{NS9})} = -T_9 \int_{\mathcal{W}_{10}} d^{10}x \ e^{-4\Phi} \sqrt{-\det \left(G + (2\pi \alpha') e^{\Phi} \widetilde{\mathcal{F}}_2 \right)}
$$

$$
\Rightarrow \mathcal{T}_{\text{NS9}} \ \simeq \ \frac{1}{g_s^4}
$$

- The Hull orientifold of Type IIB has many interesting properties
	- There is a non-orientable D-string
	- Signals the presence of S-dual of O9-plane, charged under B_{10}
	- Must introduce 32 NS9-branes to cancel tadpole

$$
S_{\text{DBI}}^{(\text{NS9})} = -T_9 \int_{\mathcal{W}_{10}} d^{10}x \ e^{-4\Phi} \sqrt{-\det \left(G + (2\pi \alpha') e^{\Phi} \widetilde{\mathcal{F}}_2 \right)}
$$

\n
$$
\Rightarrow T_{\text{NS9}} \simeq \frac{1}{g_s^4}
$$

\n
$$
S_{\text{DBI}}^{(\text{NS9})} = -T_9 \int \sqrt{-G} \left\{ e^{-4\Phi} - \frac{1}{4} (2\pi \alpha')^2 e^{-2\Phi} \text{tr}(F^2) + \cdots \right\} d^{10}x
$$

Heterotic gauge kinetic terms!

- The Hull orientifold of Type IIB has many interesting properties
	- There is a non-orientable D-string
	- Signals the presence of S-dual of O9-plane, charged under B_{10}
	- Must introduce 32 NS9-branes to cancel tadpole

$$
S_{\text{DBI}}^{(\text{NS9})} = -T_9 \int_{\mathcal{W}_{10}} d^{10}x \ e^{-4\Phi} \sqrt{-\det \left(G + (2\pi \alpha') e^{\Phi} \widetilde{\mathcal{F}}_2 \right)}
$$

\n
$$
\Rightarrow T_{\text{NS9}} \simeq \frac{1}{g_s^4}
$$

\n
$$
S_{\text{DBI}}^{(\text{NS9})} = -T_9 \int \sqrt{-G} \left\{ e^{-4\Phi} - \frac{1}{4} (2\pi \alpha')^2 e^{-2\Phi} \text{tr}(F^2) + \cdots \right\} d^{10}x
$$

Green-Schwarz anomaly cancellation terms from NS9 WZ terms

• How does the HO worldsheet theory arise?

$$
(32,10) - (10,10) = (22,0)
$$

• How does the HO worldsheet theory arise?

$$
(32,10) - (10,10) = (22,0)
$$

• How does the HO worldsheet theory arise?

 $(32,10) - (10,10) = (22,0)$

• How does the HO worldsheet theory arise?

 $(32,10) - (10,10) = (22,0)$

- Type I & HO inherit BPS branes from Type IIB
	- TI: D-string, D5-brane
	- HO: F-string, NS5-brane

- Type I & HO inherit BPS branes from Type IIB
	- TI: D-string, D5-brane
	- HO: F-string, NS5-brane
- Type I also gets non-BPS branes from Type IIB: a stable D(-1)-brane
	- Arises as superposition of IIB D(-1) anti-D(-1) branes
	- D(–1)-D9-brane sector provides gauge profile

 $\pi_{9}(\text{Spin}(32)/\mathbb{Z}_{2})\cong\mathbb{Z}_{2}$

- Pairs are unstable, but still results in tower of non-perturbative effects
- Does HO also have this tower?

- Type I & HO inherit BPS branes from Type IIB
	- TI: D-string, D5-brane
	- HO: F-string, NS5-brane
- Type I also gets non-BPS branes from Type IIB: a stable D(-1)-brane
	- Arises as superposition of IIB D(-1) anti-D(-1) branes
	- D(–1)-D9-brane sector provides gauge profile

 $\pi_{9}(\text{Spin}(32)/\mathbb{Z}_{2})\cong\mathbb{Z}_{2}$

- Pairs are unstable, but still results in tower of non-perturbative effects
- Does HO also have this tower? Yes, but it is complicated

- What have we gained from the picture?
	- HO has D-strings \Rightarrow Explains Silverstein's proposal
	- HO has inflow from the NS9-brane + D-string sector
	- There is *some set* of heterotic instantons that HO inherits from IIB via the Hull orientifold

How can we understand the instanton & its effect on the theory?

• How is Shenker's argument resolved in Type I & Type II theories?

- How is Shenker's argument resolved in Type I & Type II theories?
- Path integral for theory with D(–1)-branes:

$$
\sum_{N=0}^{\infty}\prod_{a=1}^{N}\int [d^{10}X_{a}]\sum_{n_{a}=0}^{\infty}(\cdots)
$$

[Polchinski,'94] [Green, 90s]

- How is Shenker's argument resolved in Type I & Type II theories?
- Path integral for theory with D(-1)-branes:

$$
\sum_{N=0}^{\infty}\prod_{a=1}^{N}\int[d^{10}X_{a}]\sum_{n_{a}=0}^{\infty}(\cdots)
$$

[Polchinski,'94] [Green, 90s]

• Consider 1-instanton contribution & disconnected disks

$$
A_1 = \left(1 + \bigcirc f + \frac{1}{2} \bigcirc f + \cdots \bigcirc f_1^{\text{connected}}\right)
$$

- How is Shenker's argument resolved in Type I & Type II theories?
- Path integral for theory with D(–1)-branes:

$$
\sum_{N=0}^{\infty}\prod_{a=1}^{N}\int [d^{10}X_{a}]\sum_{n_{a}=0}^{\infty}(\cdots)
$$

[Polchinski,'94] [Green, 90s]

• Consider 1-instanton contribution & disconnected disks

$$
A_1 = \exp\left(\bigcirc + \cdots \right) A_1^{\text{connected}}
$$

 $\frac{1}{\sigma_c}$

• From Euler number of disk,

- Disk diagrams of D(–1)-branes from *open string sectors* realize the Shenker effects in Type I & II theories
- If such a disk existed in the heterotic theories, they would be the natural source of Shenker effects

- Disk diagrams of D(–1)-branes from *open string sectors* realize the Shenker effects in Type I & II theories
- If such a disk existed in the heterotic theories, they would be the natural source of Shenker effects

Naively, they should not exist

- Disk diagrams of D(–1)-branes from *open string sectors* realize the Shenker effects in Type I & II theories
- If such a disk existed in the heterotic theories, they would be the natural source of Shenker effects

Naively, they should not exist

Nonetheless, we propose they do

Why can't there be Open Heterotic Strings?

• From the worldsheet perspective, heterotic theories are *defined* as theories of only closed strings

$$
\delta S_{WS} = \frac{1}{2\pi} \int d\tau \left\{ \lambda^a \delta \lambda^a - \psi^\mu \delta \psi_\mu \right\} \bigg|_{\sigma=0,\pi}
$$

$$
\lambda^a = \pm \psi^\mu
$$

Why can't there be Open Heterotic Strings?

• From the worldsheet perspective, heterotic theories are *defined* as theories of only closed strings

$$
\delta S_{WS} = \frac{1}{2\pi} \int d\tau \left\{ \lambda^a \delta \lambda^a - \psi^\mu \delta \psi_\mu \right\} \bigg|_{\sigma=0,\pi}
$$

$$
\lambda^a = \pm \psi^\mu
$$

Cannot be satisfied by heterotic CFTs

- In the context of cosmic strings: **[Polchinski,'05]**
	- Lorentzian spacetime
	- HO F-string ends on 0-branes

- In the context of cosmic strings: **[Polchinski,'05]**
	- Lorentzian spacetime
	- HO F-string ends on 0-branes
	- 0-branes have gauge profile:

$$
\pm 24 = \frac{1}{4!(2\pi)^4} \int_{S^8} {\rm Tr} (F_2^4)
$$

- Related an index theorem & zero modes
- Gauge profile taken in $\mathfrak{so}(8)$ \Rightarrow zero modes in fundamental of $\mathfrak{so}(24)$

- In the context of cosmic strings: **[Polchinski,'05]**
	- Lorentzian spacetime
	- HO F-string ends on 0-branes
	- 0-branes have gauge profile:

$$
\pm 24 = \frac{1}{4!(2\pi)^4} \int_{S^8} {\rm Tr} (F_2^4)
$$

- Related an index theorem & zero modes
- Gauge profile taken in $\mathfrak{so}(8)$ \Rightarrow zero modes in fundamental of $\mathfrak{so}(24)$
- Lorentzian: worldsheet mismatch is

$$
32 - 8 = 24
$$

Polchinski's solution: use zero modes Λ^a

Spacetime zero modes patch up HO worldsheet

$$
\lambda^a = \pm \Lambda^a
$$

• In the context of cosmic strings: **[Polchinski,'05]**

- Lorentzian spacetime
- HO F-string ends on 0-branes
- 0-branes have gauge profile:

$$
\pm 24 = \frac{1}{4!(2\pi)^4} \int_{S^8} {\rm Tr} (F_2^4)
$$

- Related an index theorem & zero modes
- Gauge profile taken in $\mathfrak{so}(8)$ \Rightarrow zero modes in fundamental of $\mathfrak{so}(24)$
- Lorentzian: worldsheet mismatch is

 $32 - 8 = 24$

Polchinski's solution: use zero modes Λ^a

Spacetime zero modes patch up HO worldsheet

 $\lambda^a = +\Lambda^a$

• In the context of cosmic strings: **[Polchinski,'05]**

- Lorentzian spacetime
- HO F-string ends on 0-branes
- 0-branes have gauge profile:

$$
\pm 24 = \frac{1}{4!(2\pi)^4} \int_{S^8} {\rm Tr} (F_2^4)
$$

- Related an index theorem & zero modes
- Gauge profile taken in $\mathfrak{so}(8)$ \Rightarrow zero modes in fundamental of $\mathfrak{so}(24)$
- Lorentzian: worldsheet mismatch is

 $32 - 8 = 24$

Polchinski's solution: use zero modes Λ^a

Similar ideas applied to 2d heterotic string theories [Seiberg,'05]

• We adapt the argument in Euclidean spacetime for the instanton

• We adapt the argument in Euclidean spacetime for the instanton

- We adapt the argument in Euclidean spacetime for the instanton
	- Euclidean spacetime
	- HO F-string ends on (-1)-brane
	- (–1)-brane has a gauge profile:

 $\pi_9(Spin(32)/\mathbb{Z}_2) \cong \mathbb{Z}_2$

• We adapt the argument in Euclidean spacetime for the instanton

- Euclidean spacetime
- HO F-string ends on (-1)-brane
- (-1)-brane has a gauge profile:

 $\pi_{9}(\text{Spin}(32)/\mathbb{Z}_2) \cong \mathbb{Z}_2$

- On Type I side, instanton has 1 mod 2 zero modes **[Witten,'98]**
- Gauge profile taken in $\mathfrak{so}(10)$
- Zero modes Λ^a in fund. rep. of $\mathfrak{so}(22)$

• We adapt the argument in Euclidean spacetime for the instanton

- HO F-string ends on (-1)-brane
- (-1)-brane has a gauge profile:

 $\pi_{9}(\text{Spin}(32)/\mathbb{Z}_2) \cong \mathbb{Z}_2$

- On Type I side, instanton has 1 mod 2 zero modes **[Witten,'98]**
- Gauge profile taken in $\mathfrak{so}(10)$
- Zero modes Λ^a in fund. rep. of $\mathfrak{so}(22)$
- Worldsheet mismatch is 32-10=22. We then enforce

 $\lambda^a = +\Lambda^a$

Heterotic disks become consistent by matching spacetime and worldsheet modes

• We adapt the argument in Euclidean spacetime for the instanton

- Euclidean spacetime
- HO F-string ends on (-1)-brane
- (-1)-brane has a gauge profile:

 $\pi_{9}(\text{Spin}(32)/\mathbb{Z}_2) \cong \mathbb{Z}_2$

- On Type I side, instanton has 1 mod 2 zero modes **[Witten,'98]**
- Gauge profile taken in $\mathfrak{so}(10)$
- Zero modes Λ^a in fund. rep. of $\mathfrak{so}(22)$
- Worldsheet mismatch is 32-10=22.
- Why is this happening?

• We adapt the argument in Euclidean spacetime for the instanton

- Euclidean spacetime
- HO F-string ends on (-1)-brane
- (-1)-brane has a gauge profile:

 $\pi_{9}(\text{Spin}(32)/\mathbb{Z}_2) \cong \mathbb{Z}_2$

- On Type I side, instanton has 1 mod 2 zero modes **[Witten,'98]**
- Gauge profile taken in $\mathfrak{so}(10)$
- Zero modes Λ^a in fund. rep. of $\mathfrak{so}(22)$
- Worldsheet mismatch is 32-10=22.
- Why is this happening?

Intuitively, the D-string from the Hull orientifold is acting as "glue"

What about other heterotic theories?

• HE F-string **can not** have endpoints in 10d Minkowski background: $\pi_7(E_8) = 0$

• HE F-string **can not** have endpoints in 10d Minkowski background: $\pi_7(E_8) = 0$

Need a non-trivial spacetime

• HE F-string **can not** have endpoints in 10d Minkowski background: $\pi_7(E_8) = 0$

Need a non-trivial spacetime

 $\pm 24 = \frac{1}{4!(2\pi)^4} \int_{\mathcal{S}^8} \text{Tr}(F_2^4)$

• HE F-string **can not** have endpoints in 10d Minkowski background: $\pi_7(E_8) = 0$

Need a non-trivial spacetime

$$
\pm 24 = \int_{M^8} \hat{A}(\mathit{TM}^8) |_\text{8-form}
$$

Shenker effects in 10d HE are disks from open Strings on a gravitational instanton

Similar to unstable, non-BPS D(-1)-brane in IIA

Conclusion

- From Shenker, closed string theories need $\mathcal{O}(e^{-1/\mathcal{B} \mathfrak{s}})$ effects
- These seem mysterious from heterotic perspective, but we propose they arise from "D-branes"
- These D-branes have inflow mechanisms
	- D-string: Hull
	- 0-brane: Polchinski
	- Instanton: Today
- Features of instanton captured by
 $\Omega_{10}^{\text{Spin}}(B\text{Spin}(32)/\mathbb{Z}_2) \cong 10\mathbb{Z}_2$

See Christian's talk tomorrow afternoon!

• All 10d supersymmetric theories have some open string sector

Conclusion

- From Shenker, closed string theories need $\mathcal{O}(e^{-1/\mathcal{B} \mathfrak{s}})$ effects
- These seem mysterious from heterotic perspective, but we propose they arise from "D-branes"
- These D-branes have inflow mechanisms
	- D-string: Hull
	- 0-brane: Polchinski
	- Instanton: Today
- Features of instanton captured by
 $\Omega_{10}^{\text{Spin}}(B\text{Spin}(32)/\mathbb{Z}_2) \cong 10\mathbb{Z}_2$

See Christian's talk tomorrow afternoon!

• All 10d supersymmetric theories have some open string sector

open strings \Rightarrow closed strings open strings \Leftarrow closed strings